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Abstract—Image/video coding has been a remarkable research
area for both academia and industry for many years. Testing
datasets, especially high-quality image/video datasets are de-
sirable for the justified evaluation of coding-related research,
practical applications, and standardization activities. We put
forward a test dataset namely USTC-TD, which has been
successfully adopted in the practical end-to-end image/video
coding challenge of the IEEE International Conference on Visual
Communications and Image Processing (VCIP) in 2022 and 2023.
USTC-TD contains 40 images at 4K spatial resolution and 10
video sequences at 1080p spatial resolution, featuring various
content due to the diverse environmental factors (e.g. scene type,
texture, motion, view) and the designed imaging factors (e.g.
illumination, lens, shadow). We quantitatively evaluate USTC-
TD on different image/video features (spatial, temporal, color,
lightness), and compare it with the previous image/video test
datasets, which verifies the wider coverage and more diversity of
the proposed dataset. We also evaluate both classic standardized
and recent learned image/video coding schemes on USTC-TD
with PSNR and MS-SSIM, and provide an extensive benchmark
for the evaluated schemes. Based on the characteristics and
specific design of the proposed test dataset, we analyze the
benchmark performance and shed light on the future research
and development of image/video coding. All the data are released
online: https://esakak.github.io/USTC-TD.

Index Terms—Benchmark, image coding, standardization, test
dataset, video coding.

I. INTRODUCTION

Nowadays, with the dramatic growth of data traffic over the
internet and the emergent application of versatile image/video
formats such as 2K, 4K, high dynamic range, and wide
color gamut, there is a pressing demand for storage and
transmission. To address this challenge, in recent decades,
image/video compression is employed to reduce the amount
of data significantly, and several video coding standards
have been developed, such as High Efficiency Video Coding
(H.265/HEVC) [1], Versatile Video Coding (H.266/VVC) [2],
Audio Video Standard (AVS1, AVS2, AVS3) [3], AOMedia
Video 1 and 2 (AV1 [4], AV2 [5]).

End-to-end image/video compression has been a research
focus on visual data compression for both academia and
industry for over six years [6]-[27]. A number of technologies
have been developed, such as expressive auto-encoder neural
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networks, precise probability estimation neural networks, and
conditional end-to-end coding frameworks, and so on. Until
recently, the performances of both end-to-end image and video
compression schemes have surpassed that of the advanced
H.266/VVC under certain test conditions [10], [11], [26], [27].

For the evaluation of these image/video compression
schemes in the practical application and standardization, they
are usually benchmarked with objective and subjective met-
rics to evaluate their rate-distortion (RD) performance and a
trade-off between coding efficiency and reconstructed quality.
To sufficiently consider the effectiveness of these quality
assessments, the test results of representative image/video
test datasets are the key to reflecting the practicability and
generalization of the researcher’s scheme.

In this paper, a new image/video dataset, named USTC-TD,
is proposed for testing and evaluating the practical image/video
coding algorithms. USTC-TD contains 40 images and 10
video sequences with a wide content coverage. For the image
dataset, each image has a high spatial resolution (4K) in RGB,
YUV444/420 color space, and PNG/YUYV file format. For the
video dataset, each video sequence consists of 96 frames, and
each frame is captured at 30 frames per second (fps) with
1080p spatial resolution in RGB, YUV444/420 color space,
and PNG/YUYV file format. For the construction of datasets, the
data is collected with the specific design of different content
factors (environmental/imaging-related factors), which aims to
cover as close as possible to the real-world coding transmission
scenes. Compared with the previous common test image/video
datasets [28]-[34], we use different quantitative criteria to
comprehensively evaluate the diversity of the proposed dataset
from the perspective of spatial, temporal, colorfulness, and
lightness information, and demonstrate the wide coverage for
various image/video features.

In addition, we establish baselines and evaluate the classic
standardized compression schemes [1]-[5], [35], [36] and re-
cent learned image/video compression schemes [6]-[12], [16],
[19]-[23], [25]-[27] under different metrics (PSNR, MS-SSIM
[37]), and then benchmark and analyze their performance on
the proposed dataset to shed light on the future research and
development of image/video coding. The benchmark data and
test scripts are online available with the proposed dataset
and released on the open-sourced website for researchers to
reproduce conveniently.

We hope the proposed test datasets allow researchers to
make more well-informed decisions under efficient evaluation,
and guide the innovation and improvement of future schemes
and experiments. In summary, our contributions are as follows:
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TABLE I
COMMON TEST DATASETS OF IMAGE COMPRESSION
Dataset Resolution Number Color Space Bit Depth Setting Characteristic
Kodak [28] 768x512 24 RGB 24 - Rich Texture
Tecnick [29] 1200x1200 100 RGB 24 Sampling Various Scenery
CLIC [30] 1189x1789 (AVG) 41 RGB 24 Valid-Professional Appropriate Exposure
TABLE 11
COMMON TEST DATASETS OF VIDEO COMPRESSION
Dataset Resolution Number FPS Length Characteristic
UVG [31] 3840x2160 16 50/120 5s-12s Fast/Slow Motion
MCL-JCV [32] 1920x1080 30 - 5s Diverse Video Scenes
HEVC CTC [33], VVC CTC [34] 240P-4K 41 24-60 150-600 Frames Appropriate Exposure

o« We build a new image/video compression test dataset
(named USTC-TD), which focuses on the diversity of
various content factors.

e We conduct a comprehensive evaluation of the pro-
posed dataset by using different quantitative criteria, and
demonstrate the wide coverage of various image/video
features.

e We conduct a comprehensive evaluation of the ad-
vanced image/video compression schemes on the pro-
posed dataset, and establish an extended baseline for the
evaluated image/video coding schemes benchmarked on
USTC-TD.

o Taking a close look at USTC-TD, we analyze the bench-
marked performance and shed light on the future research
and development of image/video coding.

The remainder of the paper is structured as follows. Section
II mentions the background of previous compression-related
test datasets. Section III summarises the data collection process
of the proposed dataset. Section IV introduces the construction
of the image/video dataset of USTC-TD, and analyzes the
characteristics of the proposed dataset. Section V presents the
experimental configuration and the evaluation of the advanced
compression schemes, and further analyzes their performance,
limitation, and inspiration. Section VI concludes the paper
and presents some suggestions for future work. Finally, we
mention the copyright for the usage of USTC-TD.

II. BACKGROUND

In the past twenty years, with the rapid development of
multimedia data over the advanced exhibition devices, resolu-
tions, frame rates, dynamic range and viewpoints, the trans-
mission/storage quantity of multimedia data is progressively
accompanied by dramatic increases in the requirement of
users. As the powerful multimedia data transmission/storage
tool, lossy/lossless image/video compression has become the
primary driver for reducing the internet bandwidth and storage.
For the standardization activities and research of compression-
related systems, image/video test (evaluation) dataset is a crit-
ical component for optimizing the performance and reflecting
the practicability and generalization of different compression
schemes. Here we review the image/video test dataset com-
monly used by standards and researchers in the past, and
summarize their characteristics.

Image Compression Test Dataset. For the evaluation of
previous image compression schemes, Kodak [28], Tecnick

[29] (sampling setting), CLIC (professional setting) [30] are
commonly used, the setting is mentioned in the Table I, and
the introduction is summarised below:

o Kodak [28] is a commonly used true color set of images
released for various testing purposes and benchmarks, it
contains 24 images with RGB format. The images are all
photographic type and continuous tone. Many sites use
them as a standard test suite for compression testing.

e Tecnick [29] is a huge collection of sample images
designed for quality assessment of different kinds of
displays and image processing techniques. The sampling
setting is widely used on testing resampling algorithms.

e CLIC [29] is a high-quality image set collected from
Unsplash [38], and contains images of similar quality
from potentially different sources. It has been success-
fully applied in the workshop and challenge on learned
image compression (CLIC) of IEEE/CVF Computer Vi-
sion and Pattern Recognition Conference (CVPR) and
Data Compression Conference (DCC).

In these image datasets, characteristics mainly focus on the
different resolutions with more scene types, most of the test
images are captured by high-definition lens in specific scenes.
These datasets aim to evaluate the basic ability of image
compression algorithms to remove intra-frame redundancy for
different scenarios, but the limited diversity of content factors
makes it difficult to evaluate the robustness of algorithms.

Video Compression Test Dataset. For the evaluation of
previous video compression schemes, UVG [31], MCL-JCV
[32], HEVC Common Test Conditions (CTC) [33], VVC CTC
[34] are commonly used, the settings are mentioned in the
Table II, and the introduction is summarised below:

e UVG [31] contains 16 test video sequences. They are
captured with Sony F65 video camera in 16-bit FOSRAW-
HFR format and converted to YUV420 videos by ffinpeg
tool [39]. It is widely used in the evaluation of advanced
learned video compression methods [12], [16], [19]-[23],
[25]-[27].

e MCL-JCV [32] is a compressed video quality assessment
dataset based on the just noticeable difference (JND)
model. All provided video sequences are available to the
public with measured raw JND data for each test subject
and allow users to do their own processing.

e HEVC CTC, and VVC CTC [33], [34] define the com-
mon test conditions and test sequences for the standard-
ization activities of H.265/HEVC [1] and H.266/VVC [2],
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TABLE III
CAMERA CAPTURED PARAMETERS OF USTC-TD 2022

Nikon-D3200 Specifications
CMOS (Nikon DX format)
23.2mmx 15.4mm

Sensor Type
Sensor Size

Effective Pixels 24 . 7million
Largest Image Size 6016x4000
TABLE IV

CAMERA CAPTURED PARAMETERS OF USTC-TD 2023

Nikon-Z-fc Specifications

CMOS (Nikon DX format)

23.5mmx 15.7mm (APS-C)
20.9million
5568x3712

Sensor Type
Sensor Size
Effective Pixels
Largest Image Size

and protect the core experiments in a well-defined rule.
It promotes the upgrading of many technologies in stan-
dardization, and has been widely used in compression-
related systems.

In these video test datasets, the characteristics mainly focus
on the various video contents, including simple/complex mo-
tion and poor/high capture quality. Most of the test videos can
only evaluate the basic ability of video compression-related
algorithms to remove inter-frame redundancy for different
scenarios under different video coding configurations, like
motion estimation (ME), motion compensation (MC), and rate
allocation/control (RC) technologies in low-delay (LD) and
random access (RA) configurations, but these video contents
with the limited types of temporal correlation make it difficult
to evaluate the robustness of temporal property-related algo-
rithms in video-based compression applications.

III. DATA COLLECTION

In this section, we introduce the hardware, format and
collection configuration of dataset collection.

A. Camera and Format Configuration

The images and video sequences are captured by using
Nikon-D3200 and Nikon-Z-fc for USTC-TD 2022 and 2023
datasets, and the specific camera parameters are shown in
Table III and Table IV . For the format of images and video
sequences in the dataset, they are transcoded from Raw camera
format (DNG, MOV) and then converted to RGB, YUV 4:4:4,
YUV 4:2:0 color space/format by using the ffinpeg [39] tool
and the specific conversion standard of color space (BT.601,
BT.709 [26], [40]).

B. Collection Configuration

To develop a comprehensive and diverse image/video
dataset, we consider the various content factors of collected
data, including the environmental factors (e.g. scene type,
texture, motion, view), imaging factors (e.g. illumination, lens,
shadow), which cover as close as possible to the real-world
coding transmission scenes. For each factor, we categorize it
into different types implicit in the construction of our dataset,
the categories are shown in Table V. According to these
conditions, we choose more than twenty different scene types

TABLE V

COLLECTION CONFIGURATION OF USTC-TD 2022 AND 2023

Collection Configuration

Element Category Example
Structural, Scenery,
Texture Natural, People,
Geometric Gridding
Complex, Occlusion,
Motion Medium, Walking,
Tiny Chatting
Upward Level, Building,
View Horizontal Level, People,
Overhead Level Close Shot
Appropriate Exposure, Natural Light,
Illumination Underexposure, Dark Light,
Overexposure High Light
Moving, Camera Motion,
Lens . .
Fix Surveillance
Hard, Camera Flash Lamp,
Shadow Soft, Natural Illumination,
Cast Building Occlusion

(e.g. dormitory, library, river bank, institutes, parks, classroom,
street, vehicles), and adjust different camera parameters to
capture. For each image, we take ten shots of the same scene
at the same time to select the better one. For each video, we
record five minutes for each scene with the same range of joint
sense to select the ninety-six frames.

IV. DATASET CONSTRUCTION AND ANALYSIS

In this section, we introduce the construction of our pro-
posed USTC-TD image and video datasets, and further analyze
them based on the comparison with previous common test
image/video datasets under different quantitative criteria.

A. Construction of USTC-TD 2022 and 2023 Image Dataset

Based on the characteristics of previous image datasets
[28]-[30], our proposed dataset aims to cover various sce-
narios. Considering the various content factors, we combine
different environmental factors and imaging factors in the
collection process. For the diversity of environmental factors,
we consider the scene type, texture, and view factors. For
the diversity of imaging factors, we consider the resolution,
illumination, and shadow factors. In Fig. 1, we show the all
collected image data of USTD-TD 2022, and in Table VI, we
show the specific configuration of each image, and make it
convenient to the researchers’ scheme design for different ap-
plication scenes. The collected image data and configuration of
USTC-TD 2023 are also mentioned in Fig. 1 and Table VII.
Based on USTD-TD 2022, USTC-TD 2023 considers more
extreme factors in real-world scenes.

Compared to the previous image datasets [28]-[30], more
specific content factors are considered in our dataset. For
example, in USTC-2022-09 and USTC-2022-05, we capture
the low-light image with underexposure and high-light image
with overexposure, which is a challenge for the generalization
of many researchers’ image compression schemes [41], [42].
In USTC-2023-16, we capture the scenes with the object
occlusion and the spatial-wise correlation becomes low, which
is a challenge for traditional intra-prediction schemes [43] in
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Fig. 1. Illustration of the image dataset in USTC-TD 2022 and 2023.
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TABLE VI
THE CONFIGURATION OF USTC-TD 2022 IMAGE DATASET
Images Scene Type Resolutions Texture Ilumination View Shadow
USTC-2022-01 Scenery 4096x2160 Geometric Appropriate Exposure Horizontal Level Soft
USTC-2022-02 Scenery 4096x2160 Structural Appropriate Exposure Upward Level Soft
USTC-2022-03 Scenery 4096x2160 Structural Underexposure Horizontal Level Hard
USTC-2022-04 Scenery 4096x2160 Structural Appropriate Exposure Horizontal Level Soft
USTC-2022-05 People 4096x2160 Natural Overexposure Horizontal Level Hard
USTC-2022-06 Scenery 4096x2160 Geometric Appropriate Exposure Upward Level Cast
USTC-2022-07 Building 4096x2160 Geometric Appropriate Exposure Upward Level Cast
USTC-2022-08 Scenery 4096x2160 Geometric Appropriate Exposure Upward Level Cast
USTC-2022-09 People, Building 4096x2160 Natural Underexposure Horizontal Level Hard
USTC-2022-10 Building 4096x2160 Geometric Appropriate Exposure Upward Level Soft
USTC-2022-11 People, Scenery 4096x2160 Natural Appropriate Exposure Horizontal Level Soft
USTC-2022-12 People 4096x2160 Natural Underexposure Horizontal Level Hard
USTC-2022-13 Scenery 4096x2160 Structural Appropriate Exposure Upward Level Cast
USTC-2022-14 People, Vehicle 4096x2160 Natural Appropriate Exposure Horizontal Level Cast
USTC-2022-15 People 4096x2160 Natural Underexposure Upward Level Hard
USTC-2022-16 People 4096x2160 Natural Appropriate Exposure Horizontal Level Soft
USTC-2022-17 People, Building 4096x2160 Natural Overexposure Horizontal Level Hard
USTC-2022-18 People, Building 4096x2160 Natural Appropriate Exposure Horizontal Level Soft
USTC-2022-19 People, Building 4096x2160 Natural Overexposure Horizontal Level Soft
USTC-2022-20 People, River 4096x2160 Natural Appropriate Exposure Overhead Level Cast
TABLE VII
THE CONFIGURATION OF USTC-TD 2023 IMAGE DATASET
Images Scene Type Resolutions Texture Ilumination View Shadow
USTC-2023-01 People, Room 3840x2160 Natural Appropriate Exposure Horizontal Level Hard
USTC-2023-02 Scenery 3840x2160 Geometric Underexposure Overhead Level Cast
USTC-2023-03 Scenery 3840x2160 Structural Underexposure Horizontal Level Soft
USTC-2023-04 Bicycle, Dense Objects 3840x2160 Geometric Appropriate Exposure Horizontal Level Soft
USTC-2023-05 Plant, Dense Textures 3840x2160 Structural Overexposure Horizontal Level Soft
USTC-2023-06 Water Wave 3840x2160 Geometric Appropriate Exposure Overhead Level Cast
USTC-2023-07 Building 3840x2160 Geometric Overexposure Upward Level Soft
USTC-2023-08 Plant, Dense Textures 3840x2160 Structural Appropriate Exposure Overhead Level Soft
USTC-2023-09 Scenery, People 3840x2160 Natural Underexposure Horizontal Level Hard
USTC-2023-10 People 3840x2160 Natural Overexposure Overhead Level Soft
USTC-2023-11 People 3840x2160 Natural Overexposure Horizontal Level Soft
USTC-2023-12 People 3840x2160 Natural Underexposure Upward Level Soft
USTC-2023-13 People 3840x2160 Natural Appropriate Exposure Horizontal Level Soft
USTC-2023-14 Building 3840x2160 Geometric Appropriate Exposure Horizontal Level Cast
USTC-2023-15 Plant 3840x2160 Structural Appropriate Exposure Horizontal Level Soft
USTC-2023-16 People, Occlusion 3840x2160 Natural Appropriate Exposure Horizontal Level Soft
USTC-2023-17 Close Shot 3840x2160 Natural Appropriate Exposure Horizontal Level Soft
USTC-2023-18 People 3840x2160 Natural Appropriate Exposure Horizontal Level Soft
USTC-2023-19 Close Shot 3840x2160 Natural Appropriate Exposure Horizontal Level Hard
USTC-2023-20 Close Shot 3840x2160 Natural Appropriate Exposure Overhead Level Cast
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Fig. 2. Illustration of the frame 01, 06, 11 of each video sequence in video test dataset of USTC-TD 2023.
TABLE VIII
THE CONFIGURATION OF USTC-TD 2023 VIDEO DATASET
Video Sequences Color Space Motion Scene Types Resolutions | Quality | Texture View Lens
USTC-Badminton YUV420, 444, RGB | Medium People, Sport 1920x1080 High Natural | Horizontal Level | Moving
USTC-BasketballDrill | YUV420, 444, RGB | Medium People, Sport 1920x1080 High Natural | Horizontal Level | Moving
USTC-BasketballPass | YUV420, 444, RGB | Medium People, Sport 1920x1080 High Natural | Horizontal Level | Moving
USTC-BicycleDriving | YUV420, 444, RGB | Complex | People, Daily Life | 1920x1080 High Natural | Horizontal Level | Moving
USTC-Dancing YUV420, 444, RGB | Complex People, Sport 1920x1080 High Natural | Horizontal Level Fix
USTC-ParkWalking YUV420, 444, RGB | Complex | People, Daily Life | 1920x1080 High Natural | Horizontal Level | Moving
USTC-Running YUV420, 444, RGB | Complex People, Sport 1920x1080 High Natural | Horizontal Level | Moving
USTC-ShankingHand | YUV420, 444, RGB | Complex | People, Daliy life 1920x1080 High Natural | Horizontal Level | Moving
USTC-Snooker YUV420, 444, RGB Tiny Sport 1920x1080 High Natural | Horizontal Level | Moving
USTC-FourPeople YUV420, 444, RGB Tiny People 1920x1080 High Natural | Horizontal Level Fix

the traditional codec [1]-[5]. We hope these specific testing
sets can help the researchers discover the problem related to
spatial characteristics in their image compression scheme.

B. Construction of USTC-TD 2023 Video Dataset

Based on the characteristics of previous video datasets
[31]-[34], our proposed dataset aims to cover more typical
characteristics of video content. Compared to the image data,
temporal-domain properties are unique to video, especially in
the diverse motion types with more environmental and imaging
factors in natural videos. There are usually multiple moving
objects of arbitrary shapes and various motion types in video
frames, leading to complex motion fields, which challenge the
video coding schemes [44]-[47]. Therefore, we simulate the
video data with various temporal correlation types, including
different kinds of motion types and lens motion.

In Fig. 2, we show the partial frames of all collected video
sequences in the USTD-TD 2023 dataset, and the specific
configuration of each video in Table VIII, which make it
convenient for the scheme design of research in real-world
scenes under different temporal correlation types. Note that
the different motion types are obviously classified in the
Table VIII with different colors.

Different from the previous video dataset, we add more
specific temporal correlation types in our proposed video
dataset. For example, in USTC-BicycleDriving, we capture
the video with a fast scene change (lens motion), high-speed

moving objects, and object occlusion, which is a challenge for
many inter-alignment schemes of submitted solutions in VCIP
Challenge 2023 [48] and many optical flow-based video com-
pression schemes [12], [16], [19]-[23], [25]-[27], [49] (the
detailed performance analysis is mentioned in Section V.B).
For the performance of different schemes of this sequence,
the learned video compression schemes are far inferior to the
traditional codecs [1]-[5]. In USTC-Snooker, we capture the
scenes with the tiny motion and fast lens motion, which is
also a challenge for optical flow-based schemes. At present,
most of the learned video compression schemes use the optical
flow-based alignment [50], [51], the optical flow-based motion
estimation is difficult to capture the tiny motion and further
influences their performance. Therefore, we put forward our
proposed video dataset with the above specific designs, and
hope the efficient testing datasets can help the researchers
discover the problem related to temporal characteristics on
their video compression scheme.

C. Analysis of USTC-TD Dataset

In the above subsections, the construction of each dataset of
USTC-TD is introduced, and we also point out some specific
characteristics of the proposed dataset. To comprehensively
verify the wide coverage of our proposed dataset for var-
ious content factors and qualitatively analyze the superior-
ity of USTC-TD, we evaluate the USTC-TD on different
image/video features and compare it with the previous im-
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age/video common test datasets (image datasets: Kodak [28],
CLIC [30], Tecnick [29], video datasets: HEVC CTC [33],
VVC CTC [34], MCL-JCV [32], UVG [31]). For analysis of
image/video features, we select the spatial information (SI)
[52], colorfulness (CF) [52], lightness information (LI) [53],
and temporal information (TT) [31] to characterize each dataset
along the dimensions of space, color, lightness, and temporal
correlation, which are commonly used to evaluate the quality
of dataset [31], [54], [55]. The definitions of the evaluation of
these features can be found in [31], [52], [53], [56], [57], and
the detailed calculation schemes are as follows:

UNDER REVIEW

o Spatial information (SI): SI is used as a representation
of edge energy [58]. Followed by [52], the SI is defined
as the root mean square of edge magnitude over the luma
component of an image or a video frame:

L S2
Scoregr = 1080 R

where S \/S2 + S; indicates the edge magnitude
at each pixel. S, and S} indicate the images/video
frames filtered with vertical and horizontal Sobel kernels,
respectively. P indicates the total number of pixels in the
filtered image, and L indicates the vertical resolution.

ey

The normalization factor ﬁ is used to reduce the
scale and resolution dependence of SI. For video datasets,
followed by [31], SI is taking the maximum of the results
of all video frames.

Colorfulness (CF): CF is used as a representation of the
variety and intensity of colors in the image. Followed by
[31], [59], CF is defined as

Scorecr = /02, + agy +0.3y/p?, + ugy 2)

where opponent color spaces (rg, by) are defined in RGB
color space. To be special, rg = R—G and by = 0.5 (R+
G) - B.

Lightness information (LI): LI is used as a representation
of lightness variation. To measure the lightness informa-
tion, we adopt the root mean square (RMS) contrast [57],
the LI is defined as the standard deviation of the pixel
intensities:

N-1

i

Scorerr = —1)?, 3)

I
=)

=0 j

where the intensities (I; ;) are the i-th and j-th elements
of the two-dimensional image of size M by N. I is the
average intensity of all pixel values in the image. The
pixel intensities of the image (I) are normalized in the
range [0, 1].

o Temporal information (TI): Tl is used as a representation
of temporal variation. Followed by [31], [56], TI is
defined as the maximum amount of temporal variation
between successive frames F,,_1 and F};:

Scorer; = max

1<n<N-1 [Fn(lv.j) _Fn—l(l,])]
(€))
where W, H, N denote the frame width, height and the

number of total frames, respectively.

std
0<i<W—1
0<j<H-1

The quantitative evaluation scores of different datasets
are shown in Fig.3, 4, 5. From the comparison with other
datasets, we find that USTC-TD can collaborate with other
datasets to handle a wide coverage of different image/video
features, which verifies the diversity of the proposed dataset.

Specifically, for the evaluation of USTC-TD image dataset,
the scores of SI, LI, CF cooperate to evaluate its spatial, col-
orfulness and lightness diversity. Compared to the other image
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TABLE IX
QUANTITATIVE RESULTS OF THE USTC-TD 2022 AND 2023 IMAGE
DATASETS. NOTE THE HIGHEST VALUES ARE REPRESENTED IN RED,
AND THE LOWEST VALUES ARE REPRESENTED IN BLUE

USTC-TD 2022 | USTC-TD 2023

Image | SI CF LI | Image | SI CF LI
01 13.57 167.24 0.27 01 12.81 15576 0.24
02 10.71 18137 0.15 02 13.13 162,53 0.21
03 11.08 161.07 0.22 03 1222 191.29 0.21
04 12.13 191.26  0.21 04 1444 17129 0.27
05 12.45 178.87 0.20 05 15.17  102.66 0.17
06 10.74  187.86  0.30 06 14.12 18255 0.25
07 13.93  168.51 0.27 07 9.99 173.61 0.35
08 11.17  191.82 0.26 08 15.16 135.16 0.14
09 1249 164.82 0.25 09 13.02 18797 0.33
10 10.58  169.67 0.22 10 1297 168.71 0.30
11 13.63 171.74 0.18 11 13.65 157.03 0.25
12 12.89  112.00 0.21 12 12.28 18091 0.31
13 10.59 186.17 0.19 13 13.77  128.10 0.27
14 14.00 17538 0.24 14 12.67 169.37 0.27
15 1229  162.23 0.21 15 14.64  150.07 0.18
16 11.24  72.44 0.25 16 13.03 14998 0.30
17 10.62  159.53 0.35 17 14.26 84.85 0.23
18 14.09 173.38 0.18 18 12.23 74.75 0.25
19 12.33 17698 0.26 19 12,76 14293 0.24
20 12,70  180.76  0.25 20 13.62 162.03 0.22

TABLE X

QUANTITATIVE RESULTS OF THE USTC-TD 2023 VIDEO DATASET.
NOTE THE HIGHEST VALUES ARE REPRESENTED IN RED, AND
THE LOWEST VALUES ARE REPRESENTED IN BLUE

USTC-TD 2023

Video Sequence SI TI

USTC-Badminton 67.37 2791
USTC-BasketballDrill 130.31 42.25
USTC-BasketballPass 94.63 46.92
USTC-BicycleDriving 38.66 52.70
USTC-Dancing 74.34 19.61
USTC-FourPeople 45.49 9.54
USTC-ParkWalking 72.48 40.22
USTC-Running 86.52 34.84
USTC-ShakingHands 100.67 44.11
USTC-Snooker 41.62 29.63

datasets [28]—[30], it exhibits SI scores ranging from 9 to 16,
and is distinguished from other image datasets, as shown in
Fig.3. The proposed image dataset incorporates more spatial
diversity within the wide range of colorfulness diversity. In
Fig. 4, the proposed image dataset also shows a wide coverage
of LI scores, ranging from 0.10 to 0.40, which aligns with
the range of other image datasets and demonstrates that the
proposed image dataset also exhibits excellent generalization
of lightness diversity. For the evaluation of the USTC-TD
video dataset, the scores of TI and SI cooperate to evaluate its
spatial and temporal diversity, as shown in Fig.5. Compared
to the other video datasets [31]—[34], the USTC-TD exhibits
a wide range of temporal variation with generalized spatial
variation, ranging from 5 to 55. It further compensates for the
absence of the 40 to 55 (higher) range in the temporal variation
of other video datasets, which enables a wide coverage of
temporal diversity for the comprehensive assessment of video
compression-related algorithms.

In addition, we present the detailed variety distribution of
these different features of USTC-TD image/video datasets, as

shown in Table IX and Table X. The higher/lower scores of
different evaluative features are represented in different colors.
Benefiting from the specific design of various content factors
(environmental/imaging-related factors) of each image/video,
we can find that the typical features of different content
factors are evenly distributed in the captured image/video
to ensure the diversity. For example, first, as mentioned in
Section IV.A and Table VI, VII, IX, the setting of illumination
(overexposure/underexposure) of USTC-2022-17, and USTC-
2023-05, USTC-2023-09 enables the highest/lowest score of
LI evaluative features, which demonstrates its specific design
of imaging-related factors. Second, as mentioned in Section
IV.B, Table VIII and Table X , the setting of complex motion
(high-speed/tiny-speed moving objects) and lens (moving/fix)
of USTC-BicycleDriving and USTC-FourPeople enables the
higher/lower score of TI evaluative features, which demon-
strates its specific design of environmental factors. We hope
these specific design can help the researchers analyze and
discover the bottlenecks of their research. The above analysis
results and related codes are also open-sourced on the website.

V. EXPERIMENTS

In this section, first, we present the experimental con-
figurations employed for the evaluation of compression
schemes. Second, we evaluate the classic standardized com-
pression schemes and recent advanced image/video compres-
sion schemes on the proposed dataset under different metrics,
and benchmark their performance on our proposed dataset.
Third, we analyze the benchmarked performance, and further
point out some limitations and inspirations among these ad-
vanced schemes to shed light on the future research.

A. Experimental Settings

In this subsection, first, we present the experimental set-
tings of the evaluative compression schemes, including the
selection of advanced image/video compression schemes and
the training/testing configurations of these methods. Second,
we introduce the evaluation metrics for these methods on our
proposed dataset.

1) Selection of Evaluative Methods: For advanced image
compression schemes, we select classic standardized schemes
and advanced learned schemes. For traditional codecs, we
select BPG [35] and H.266/VVC [2]. For learned image
compression schemes, we select the Factorized Model [6],
Hyperprior Model [6], Autoregressive Model [7], Cheng2020
[8], iWave++ [9], ELIC [10], and MLIC++ [11]. For learned
compression standardized schemes, we select the high-profile
model of IEEE 1857.11 [36] (iWave++).

For video compression schemes, we also select classic
standardized schemes and advanced learned schemes. For
standardized codecs, we select the H.265/HEVC [1], and
H.266/VVC [2]. For learned video compression schemes, we
select the DVC_Pro [12], [49], CANF-VC [16], DCVC [19],
TCM-VC [20], DCVC-HEM [21], OOFE [22], SDD [23],
VNVC [25], DCVC-DC [26], and DCVC-FM [27]. The de-
tailed introduction and test instructions of these methods are
mentioned in Section I of supplementary material.
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2) Testing Configurations of Evaluative Traditional Image
Compression Schemes: For testing, the officially released
BPG software, VITM-17.0 (H.266/VVC reference software) are
chosen. For BPG, the default configuration is used, and the
internal color space is set to YUV444/420 for the testing
of BPG and BPG444. For VTM-17.0, the encoder_intra_vtm
configuration is used, and the internal color space is set to
YUV444. For the different source formats of these testing
datasets (USTC-TD and [28]-[30]), we convert them to the
YUV444 color space for the input of VITM-17.0 by using the
[ffmpeg [39] tool (BT.601 conversion standard by default).

3) Testing Configurations of Evaluative Traditional Video
Compression Schemes: For testing, the officially released HM-
16.20 (HEVC reference software) and VIM-13.2 are chosen.
For the setting of HM-16.20, the encoder_lowdelay_main_rext
configuration is used. For the setting of VIM-13.2, the en-
coder_lowdelay_vtm configuration is used. The internal color
space is set to YUV444. For the different source formats
of these testing datasets (USTC-TD and [31]-[34]), we also
convert them to the YUV444 color space as the input of the
above traditional codecs by using the ffimpeg [39] tool.

4) Training and Testing Configurations of Evaluative
Learned Image Compression Schemes: For training, these
learned image compression models are optimized by mean
squared error (MSE) or multi-scale structural similarity index
measure (MS-SSIM), and the Flicker2W [60] dataset is used
as the training dataset. These models are optimized by using
the Adam Optimizer [61], with a batch size of 8 and a
patch size of 256 x 256. They are optimized for around 1.2
million iterations, starting with an initial learning rate of

10~%. The learning rate is reduced to 10~° after 400 epochs
and further down to 107° after 30 epochs. The setting of
A is set to {0.001,0.004,0.024,0.080,0.200} for iWave++,
and {0.0018,0.0035,0.0067,0.0130,0.0250,0.0483}  for
other schemes. For testing, the officially released model
of MLIC++ and iWave++, and the reproduced model of
ELIC are used. The model of other methods is provided by
CompressAl [62].

5) Training and Testing Configurations of Evaluative
Learned Video Compression Schemes: For training, these
learned video compression models are mainly optimized by
MSE or MS-SSIM, and the Viemo-90k [63] is used as the
training set. For the testing of USTC-TD, the officially released
models of these schemes are used. For the testing of the
variable-rate model, the bitrate points are aligned to that of the
traditional codec. For the testing of other models, we directly
use the released model. For the different source formats
of these testing datasets, we convert them from YUV444
to the RGB/YUV420 color space as the input of different
learned video codecs by using the BT.709 conversion standard
(adopted in JPEG Al [40])/ ffmpeg [39] tool.

6) Evaluation Metrics: We use PSNR and MS-SSIM [37]
to measure the quality of the coded frames in the comparison
to the original frames. Bits per pixel (bpp) is used to measure
the number of bits for encoding each pixel in each image
or video frame. The Bjontegaard Delta bitrate (BD-rate) [64]
is used to compare the performance of different compression
schemes, where negative numbers indicate bitrate saving and
positive numbers indicate bitrate increasing. For the evaluation
of image and video compression schemes, the PSNR and
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MS-SSIM are both calculated and compared in RGB color
space. For image, the conversion process of different color
spaces is performed by using the ffinpeg tool [39]. For video,
the conversion process is aligned to the setting mentioned in

DCVC-DC [26] by using the BT.709 conversion standard.

B. Experimental Results

In this subsection, we establish the baselines and bench-
mark the performance of advanced image/video compression
schemes on USTC-TD image/video datasets, and further ana-

lyze their performance.

1) Evaluation and Analysis of Advanced Image Compres-
sion Schemes on USTC-TD Image Datasets: Taking bpp as
the horizontal axis and the reconstructed PSNR/MS-SSIM as
the vertical axis, we present the rate and distortion curves of
different image compression schemes over USTC-TD 2022
and 2023 image datasets in Fig. 6. From the overall results,
we can find that the partial learned schemes (iWave++ [9],
ELIC [10], MLIC++ [11]) can outperform the traditional
image compression schemes and achieve better compression
performance than H.266/VVC on proposed datasets under
different metrics, which show its powerful potential. Here
we further analyze their performance from the perspective of

content factors of different test images of USTC-TD.

As shown in Fig. 8, the detailed RD curves of some test im-
ages (USTC-2022-12, USTC-2023-15, USTC-2022-17, USTC-
2023-07) with some special phenomenons are illustrated, and
the results of each test image are presented in the Section II of
supplementary material. Based on the performance comparison
of these schemes and feature analysis of proposed datasets
(Section IV.C), the conclusions mainly include the following

four aspects:

e (1) The learned schemes show the good potential on
some complex scenarios. For example, as shown in the
Fig. 8 (a) and (b), compared to the overall results
(Fig. 6), more learned schemes (Autoregressive Model
[7], Cheng2020 [8], iWave++ [9], ELIC [10], MLIC++
[11]) perform better than the traditional schemes on some

test images with specific features of environment-related
factors (Table IX), such as the USTC-2022-12 with the
lower scores of CF, the USTC-2023-15 with the higher
scores of SI. Meanwhile, the results also demonstrate the
previous image train/test datasets [28]-[30] can guide the
researcher to train/evaluate the basic ability of intra-frame
redundancy removal of their schemes to some extent.

e (2) The traditional schemes show the powerful general-

ization ability in some extreme scenarios. For example, as
shown in the Fig. 8 (c) and (d), compared to the overall
results (Fig. 6), the generalization ability of learned
schemes is lacking to handle the evaluative images with
extreme mixture features of environment/imaging-related
factors well (Table IX), such as the USTC-2022-17 with
the lower scores of SI, CF and the higher scores of LI,
the USTC-2023-07 with the lower scores of SI and the
higher scores of LI. Although the performance of learned
schemes surpasses the traditional schemes in general, they
are still limited to some extreme scenarios.

e (3) Based on the analysis of different features (SI, CF,

LI, TT) of proposed datasets (Section IV.C), the detailed
characteristics of different test images can efficiently
assist the researcher to analyze the detailed bottleneck
of their compression scheme.

e (4) Compared to the performance of these schemes on

different datasets [28]-[30], the proposed datasets can
collaborate with other datasets to handle a wide coverage
of performance evaluation, which also demonstrates the
efficiency of specific design of the proposed datasets’
different factors/features.

2) Evaluation and Analysis of Advanced Video Compres-
sion Schemes on USTC-TD Video Dataset: Taking bpp as the
horizontal axis and the reconstructed PSNR/MS-SSIM as the
vertical axis, we present the rate and distortion curves and
BD-rate results of different video compression schemes over
the USTC-TD 2023 video dataset in Fig. 7, Table XI and
Table XII. From the overall results of PSNR metric, we can
find that the performance of the advanced traditional schemes



TABLE XI
BD-RATE (%) COMPARISON FOR PSNR. THE ANCHOR IS VTM.

UNDER REVIEW

Dataset VIM HM DVC_Pro DCVC CANF-VC TCM-VC VNVC DCVC-HEM OOFE SDD DCVC-DC DCVC-FM
HEVC Class B 0.0 39.0 188.6 115.7 58.2 32.8 24.6 -0.7 -153  -13.7 -13.9 -8.8
HEVC Class C 0.0 37.6 2028 150.8 73.0 62.1 48.2 16.1 22 23 -8.8 -5.0
HEVC Class D 0.0 347 160.3 106.4 48.8 29.0 224 -7.1 -23.0 -249 -27.7 233
HEVC Class E 0.0 48.6 4295 257.5 116.8 75.8 66.8 20.9 04 -84 -19.1 -20.8

HEVC Class RGB | 0.0 44.0 186.8 118.6 87.5 25.4 16.0 -15.6 -17.5  -17.5 -27.9 -18.6
UVG 0.0 364 2187 129.5 56.3 23.1 18.0 -17.2 =223 -19.7 -25.9 -20.5
MCL-ICV 0.0 419 163.6 103.9 60.5 38.2 30.2 -1.6 5.8 7.1 -14.4 -1.4
USTC-TD 0.0 469 286.7 133.0 69.3 69.8 63.9 17.0 9.5 4.5 7.1 23.1
Average 0.0 41.1 229.6 1394 71.3 44.5 36.3 1.5 9.6 -11.1 -16.3 -10.2
TABLE XII
BD-RATE (%) COMPARISON FOR MS-SSIM. THE ANCHOR IS VTM.

Dataset VIM HM DVC_Pro DCVC CANF-VC TCM-VC VNVC DCVC-HEM OOFE SDD DCVC-DC DCVC-FM

HEVC Class B 0.0 36.8 67.0 35.9 25.5 -20.5 -33.1 -47.4 -15.1 -48.0 -53.0 -12.5
HEVC Class C 0.0 38.7 61.1 24.9 17.7 -21.7 -29.3 -43.3 -159 -49.6 -54.6 -18.0
HEVC Class D 0.0 349 25.3 2.7 1.5 -36.2 -41.1 -55.5 -28.6  -60.0 -63.4 -30.6
HEVC Class E 0.0 384 195.8 90.0 114.9 -20.5 -0.4 -52.4 93 -515 -60.7 -32.6
HEVC Class RGB | 0.0 37.3 66.8 43.7 52.9 -21.1 -32.4 -45.8 -16.7  -46.3 -54.4 -16.6
UvVG 0.0 37.1 74.6 11.9 33.1 -6.0 -15.2 -32.7 -10.6  -342 -36.7 -1.3
MCL-JCV 0.0 437 46.1 39.1 11.7 -18.6 -29.0 -44.0 2.5 -46.3 -49.1 -5.0
USTC-TD 0.0 479 38.6 -18.1 71.5 -41.1 -62.1 -62.3 84  -66.3 -68.6 37.1

Average 0.0 394 71.9 28.8 41.9 -23.2 -30.3 -47.9 -11.3  -50.3 -55.1 -10.7

is better than that of the all advanced learned schemes on
the proposed dataset, which is opposed to the performance
on other datasets [31]—-[34]. From the overall results of MS-
SSIM metric, the performance of the traditional schemes is
lower than that of advanced learned schemes. Here we further
analyze their performance from the perspective of typical
characteristics of different test video contents of USTC-TD
video dataset.

As shown in Fig. 9, the detailed RD curves of some
test videos (USTC-FourPeople, USTC-BasketballPass, USTC-
Snooker, USTC-BicycleDriving) with some special phe-
nomenons are illustrated, the results of each test video are
also presented in the Section II of supplementary material.
Based on the performance comparison of advanced schemes
and feature analysis of proposed datasets (Section IV.C), the
conclusions mainly include the following three aspects:

e (1) The traditional schemes show the robust generaliza-
tion ability on various real-world scenarios. As shown
in Table XI, different from the performance of ad-
vanced compression schemes on other datasets [31]-[34],
the traditional schemes still achieve the state-of-the-art
performance of these schemes on USTC-TD. Different
from the other datasets, USTC-TD video dataset focuses
on various temporal correlation types. Combined the
attributes of different test videos of USTC-TD (Fig. 5,
Table VIII), we find that the traditional schemes can
handle more scenarios with the various temporal features
of motion-related elements (motion type, lens motion),
such as the USTC-BicycleDriving with higher scores of
TI and USTC-Snooker with specific design of lens motion
(mentioned in Section IV.C). The performance of these
test videos is shown in Fig. 9 (c) and (d), and the results
demonstrate that the traditional schemes can handle these
scenes with complex motion types robustly.

¢ (2) The learned schemes show the optimistic potential on
some scenarios with complex motion, such as the USTC-
FourPeople with lower scores of TI, and the USTC-
BasketballPass with higher scores of TI. These scenarios
commonly appear in the previous test datasets [31]-[34],
such as the FourPeople and BasketballPass in HEVC/VVC
CTC, which can guide the design and the optimized
target of deep network to handle these motion situations.
The results of these specific scenarios demonstrate the
basic evaluative ability of the previous datasets and the
performance potential of the deep learning-based manner.

e (3) Based on the analysis of video-related features (Sec-
tion IV.C), our proposed dataset can make up more typ-
ical motion/temporal correlation-related real-world fac-
tors with other datasets to handle a wide coverage of
performance evaluation, which also demonstrates the ef-
ficiency of the specific design of the proposed datasets’
different factors/features. Furthermore, compared to the
performance of other datasets [31]-[34] of different
schemes mentioned in [7]-[11], as shown in Table XI
and Table XII, the different phenomenon between the
performance of our proposed dataset and other datasets
also verifies the efficiency of the proposed dataset.

C. Limitation and Inspiration

In this subsection, based on the analysis of experimental
results, we further analyze the limitations of evaluative im-
age/video compression schemes, and point out some limi-
tations and inspirations among these advanced compression
schemes.

1) Limitation and Inspiration of Image Compression:
Based on the above analysis in Section V.B, we can find
that the generalization ability of the learned codec is a major
challenge for practical usage. Most existing methods focus
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on improving the compression performance while neglecting
its generalization for various scenarios. As the situations
mentioned in the item (1) and (2) of conclusions (Section V.B
(1)), the generalization ability is challenged with the effective
extension of the evaluation data. These problems mainly arise
from the incompletion of training data and the constraint
optimization direction of deep learning-based manner with
the limited evaluation data. Here we further explore these
problems based on the coding process of different compression
schemes.

For example, as shown in Fig. 6, the performance of one bpp
point of MLIC++ is lower than that of other schemes, but the
performance of other bpp points is better. In detail, we further
illustrate the detailed rate-distortion curves of each image, such
as the RD curves of USTC-2022-12, USTC-2022-17, USTC-
2023-07 shown in Fig. 8 (a), (b), and (c), we can find that
one bpp model of MLIC++ all performs poorly on several
specific images. To explore it, we visualize the bits allocation
map of ELIC and MLIC++ on some test images, such as the
cases of USTC-2022-03 and USTC-2022-12 shown in Fig. 10.
Compared to ELIC, MLIC++ allocates more bits to some
flat areas, whereas these areas could be encoded with fewer
bits. Inspired by them, the controllable model optimization,
domain adaptation, and precise rate allocation of the learned
compression models need to be further improved for future
practical usage.

2) Limitation and Inspiration of Video Compression: Based
on the above analysis in Section V.B, as shown in Fig. 7
and Table XI, the performance of all learned video codecs
is lower than that of traditional video codecs on USTC-TD,
which is different from the performance phenomenon on other
datasets. The reason mainly comes from that the learned

TABLE XIIT
BD-RATE (%) RESULTS OF DIFFERENT TRAINING STRATEGIES OF
OPTICAL FLOW-RELATED MODULE OF DCVC-DC
ON USTC-TD [26] UNDER PSNR METRIC

Scheme BD rate (%)
Dcve-DC 7.1%
DCVC-DC + Flow Pre-training -1.6%
A -8.7%

video codecs perform poorly on some sequences with complex
motion features. Here we further explore these problems based
on the motion-related modules of different schemes.

As mentioned in Fig. 9 (c) and (d), the performance of
the state-of-the-art learned video codecs is even lower than
that of the H.265/HEVC [1]. Based on these observations,
we visualize the video reconstructed frames of these video
codecs as shown in Fig. 11. From the comparison of different
scenarios, we can find that the specific design of motion-
related features (high-speed moving objects, object occlusion,
and camera motion) bring severe motion blur in the temporal
domain, which challenges the optical flow-based motion esti-
mation/compensation module of learned video codecs that is
difficult to estimate accurate motion vector prediction. There-
fore, we further illustrate the estimated motion vectors of these
traditional and learned codecs in Fig. 11, it obviously observes
that the motion field of learned video compression schemes
performs wrong and disordered, which further demonstrates
that the flow-based motion-related modules of learned video
codecs are difficult to handle the complex motion situations.

To further verify the performance impact of these problems,
we tentatively design the experiment to optimize the optical
flow-related module of different learned video codecs. We set



the state-of-the-art scheme (DCVC-DC [26]) as the anchor,
and use the motion vectors of H.266/VVC as the optimized
target of the optical flow-based motion estimation module
(Spynet [51]) in the offline pre-training stage, instead of the
usage of EPE loss for the training of these optical flow-based
modules. The performance is shown in Table XIII. Inspired
by the results, it verifies that the motion modeling and training
strategy of learned video compression models are necessary to
be further improved for practical usage in the future.

VI. CONCLUSION

In this paper, we propose a test dataset (named USTC-TD)
for compression-related research, which covers more diverse
content factors. To evaluate the efficiency of USTC-TD, we
qualitatively evaluate the USTC-TD on different image/video
features and compare it with the previous image/video com-
mon test datasets to verify its wide coverage. In addition,
we evaluate the advanced compression methods under differ-
ent metrics benchmarked on USTC-TD, and further analyze
their performance to point out the inspirations for future
compression-related research.

In the present dataset construction process, we only consider
the basic image and video test datasets. In the future, we
plan to progressively extend the annotation datasets of USTC-
TD for image/video coding for machine (ICM/VCM) [65]-
[67], such as object segmentation [68], object detection [69],
action recognition [70], et al, and the reconstruction dataset
of video enhancement, such as image/video super-resolution
[71], [72], denoising [73], warping [74], et al, for the testing
of compression-related downstream researches, and provide
a comprehensive baseline to promote the development of
compression-related diverse tasks.

VII. COPYRIGHT

The released images and sequences are captured and pro-
cessed by the University of Science and Technology of China
(USTC). All intellectual property rights remain with USTC.

The following uses are allowed for the contributed dataset:
(1) Data (images and videos) may be published in research
papers, technical reports, and development events. (2) Data
(images and videos) may be utilized for standardization activ-
ities (e.g., ITU, MPEG, AVS, VQEG).

The following uses are NOT allowed for the contributed
dataset: (1) Do not publish snapshots in product brochures. (2)
Do not use video for marketing purposes. (3) Redistribution
is not permitted. (4) Do not use it in television shows,
commercials, or movies.
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Supplementary Material for
USTC-TD: A Test Dataset and Benchmark for
Image and Video Coding in 2020s

I. OVERVIEW OF THE EVALUATIVE IMAGE/VIDEO
COMPRESSION SCHEME

Here we mention the characteristics and settings of im-
age/video evaluative compression methods in our experiments
(Section V of main text).

A. Characteristics of Evaluative Image/Video Compression
Schemes

Here we mention the characteristics of each test image/video
compression scheme in detail.

1) Standardized Schemes: BPG [1]: BPG (Better Portable
Graphics) is an image format. Its purpose is to replace the
JPEG image format when quality or file size is an issue. It
is based on a subset of the HEVC and supported by most
Web browsers with a small Javascript decoder (gzipped size:
56KB). It supports the same chroma formats as JPEG and has
the higher compression ratio than JPEG.

High Efficiency Video Coding (H.265/HEVC) [2]: High
Efficiency Video Coding (HEVC), also known as H.265 and
MPEG-H Part 2, is a video compression standard designed
as part of the MPEG-H project as a successor to the widely
used Advanced Video Coding (AVC, H.264, or MPEG-4 Part
10). In comparison to AVC, HEVC offers from 25% to 50%
better data compression at the same level of video quality,
or substantially improved video quality at the same bit rate. It
supports resolutions up to 8192x4320, including 8K UHD, and
unlike the primarily 8-bit AVC, HEVC’s higher fidelity Main
10 profile has been incorporated into nearly all supporting
hardware.

Versatile Video Coding (H.266/VVC) [3]: Versatile Video
Coding (VVC), ISO/IEC 23090-3, and MPEG-I Part 3, is a
video compression standard finalized on 2020, standardized
by the Joint Video Experts Team (JVET), a joint video expert
team of the VCEG working group of ITU-T Study Group 16
and the MPEG working group of ISO/IEC JTC 1/SC 29. It is
the successor to HEVC. It improves compression performance
and supports for a very broad range of applications.

IEEE 1857.11 [4]: IEEE 1857.11 provides efficient, neural
network-based coding tools for compression, decompression,
and packaging of image data, which significantly improve the
compression efficiency compared to IEEE Std 1857.4 (intra-
picture coding) and IEEE Std 1857.10 (intra-picture coding)
under comparable settings, and facilitate the compression and
decompression on top of neural network-oriented computing
infrastructures like neural network processing units (NPUs).
The target applications and services include but are not limited
to Internet images, user-generated images, and other image-

enabled applications and services such as digital image storage
and communications.

2) Other Learned Image Coding Schemes: Factorized
Model [5]: Factorized Model introduces the convolutional-
based transform network employing generalized divisive nor-
malization (GDN) [6] and the factorized entropy model. It
suggests the use of additive uniform noise to address non-
differentiable quantization. Notably, this is the first learned
image compression method that surpasses JPEG2000 [7] on
both RGB BD-rate PSNR and RGB BD-rate MS-SSIM.

Hyperprior Model [5]: The pioneering work proposes a
hyperprior entropy model for learned image compression,
significantly enhancing compression performance. It has since
been widely used and remains influential in the field.

Autoregressive Model [8]: Autoregressive Model proposes
combining an autoregressive spatial context model with a
hyperprior for more accurate entropy estimation. This method
marks the first learning-based image compression approach to
outperform BPG [1] on both RGB BD-rate PSNR and RGB
BD-rate MS-SSIM.

Cheng2020 [9]: Cheng2020 utilizes the discretized Gaus-
sian Mixture Model to estimate the distributions of latent
codes, while employing attention modules in transform to
enhance performance. Notably, this is the first work to achieve
comparable performance with the latest compression standard
VVC [3] in terms of both RGB BD-rate PSNR and RGB BD-
rate MS-SSIM.

iWave++ [10]: iWave++ proposes a versatile learned image
compression scheme with a trained wavelet-like transform.
It supports both lossy and lossless image compression. This
model is accepted as the high-profile model in the IEEE
1857.11 [4] standard.

ELIC [11]: ELIC adopts the space-channel context model
in entropy estimation and stacked residual blocks as the non-
linear transform. This method not only demonstrates superior
performance but also supports fast preview decoding.

MLIC++ [12]: MLIC++ utilizes channel-wise, local spa-
tial, and global spatial information to achieve better entropy
estimation. Compared to concurrent models like ELIC, this
method achieves state-of-the-art compression performance.

3) Learned Video Coding Schemes: DVC_Pro [13], [14]:
The first work proposes the motion-compensated prediction
and residual coding framework of end-to-end learned video
compression. DVC_pro follows the traditional video com-
pression framework and replaces all the modules with neural
networks. When intra period is 10 for HEVC videos and 12 for
non-HEVC videos, experimental results show that DVC_pro
performs better than H.264 [15] on both RGB BD-rate PSNR



and RGB BD-rate MS-SSIM. Besides, DVC_pro also achieves
comparable compression performance with H.265 [2] on both
RGB BD-rate PSNR and RGB BD-rate MS-SSIM.

DCVC [16]: The first work proposes the motion-
compensated prediction and conditional coding framework
of end-to-end learned video compression. DCVC utilizes the
learned temporal correlation between the current frame and
the predicted frame rather than the subtraction-based residual.
When the intra period is 10 for HEVC videos and 12 for
non-HEVC videos, its experimental results perform better than
DVC_Pro [14] and x265' on both RGB BD-rate PSNR and
RGB BD-rate MS-SSIM. Specifically, it achieves an average
18.40% and 17.82% RGB BD-rate reduction, respectively, in
terms of PSNR compared to x265 and DVC_Pro [14].

CANF-VC [17]: CANF-VC is the first conditional aug-
mented normalizing flows-based end-to-end learned video
compression framework. CANF-VC leverages the conditional
augmented normalizing flows to learn a video generative
model for conditional inter-frame coding, and extends the con-
ditional coding to motion coding, forming a purely conditional
coding framework. Under intra period 10/12 configuration, its
experimental results perform better than M-LVC [18], DCVC
[16] and H.265 [2] on RGB BD-rate PSNR and MS-SSIM.
Under intra period 32 configuration, its experimental results
perform better than those of M-LVC [18], DCVC [16] on RGB
BD-rate PSNR, and H.265 [2] on RGB BD-rate MS-SSIM.

TCM-VC [19]: Based on DCVC [16], TCM-VC further
proposes the multi-scale temporal context mining to better
utilize the temporal correlation. Under intra period 32 con-
figuration, the experimental results show that the compression
performance of neural video codecs (DVC_Pro [13], [14], M-
LVC [18], RLVC [20], DCVC [16]) is greatly reduced while
their framework still achieves an average 14.4% RGB BD-
rate reduction against HM-IPP in terms of PSNR and achieves
about 21.1% BD-rate reduction in terms of MS-SSIM.

DCVC-HEM [21]: Based on TCM-VC [19], HEM further
designs a parallel-friendly entropy model that explores both
temporal and spatial dependencies. Besides, it also supports
variable bitrates in a single mode. HEM is the first end-to-end
neural video codec to exceed H.266 [22] using the highest
compression ratio configuration. Under intra period 32 con-
figuration, the experimental results show that the compression
performance of neural video codecs (DVC_Pro [13], [14], M-
LVC [18], RLVC [20], DCVC [16], TCM-VC [19]) is greatly
reduced while their framework still achieves an average 4.7%
RGB BD-rate reduction against VIM-IPP in terms of PSNR
and achieves about 46.4% BD-rate reduction in terms of MS-
SSIM.

OOFE [23]: OOFE proposes an offline and online optical
enhancement strategy for the flow-based end-to-end learned
video compression framework, which is integrated into DCVC
and DCVC-DC, respectively. Experimental results demon-
strate that the proposed offline and online enhancement to-
gether achieves on average 13.4% bitrate saving for DCVC
[16] and 4.1% bitrate saving for DCVC-DC [24] on RGB
BD-rate PSNR when intra period is 12. It’s worth noting that,

Uhttps://www.videolan.org/developers/x265.html

for a fair comparison, we exclusively utilize the offline optical
flow enhancement when testing the USTC-TD.

VNVC [25]: The first work proposes a versatile neural video
coding framework for both human and machine vision, it uses
a single-bitstream, compact coded representation, targeting
video reconstruction, video enhancement, and video analysis
tasks simultaneously. It reports the experimental results on
video reconstruction, video enhancement and video analy-
sis tasks, respectively. For video reconstruction, it regards
H.266/VVC official reference software VIM-13.2 with VTM-
IPP configuration (one reference frame and flat QP) as the
anchor. Under intra period 12 configuration, it achieves an
average 7.0% BD-rate reduction against VTM-IPP in terms of
PSNR and achieves about an average 49.9% BD-rate reduction
in terms of MS-SSIM. Under intra period 32 configuration, the
experimental results show that the compression performance
of neural video codecs (DVC_Pro [13], [14], DCVC [16],
CANF-VC [17], TCM-VC [19]) is greatly reduced while
their framework still achieves an average 4.6% BD-rate re-
duction against VTM-IPP in terms of PSNR and achieves
about 50.3% BD-rate reduction in terms of MS-SSIM. For
video enhancement and video analysis tasks, their framework
achieves excellent performance compared to other learning
video coding frameworks.

SDD [26]: Based on the motion-compensated prediction
and conditional coding framework, SDD proposes a structure
and detail decomposition-based motion model and a long
short-term temporal contexts fusion mechanism. Under intra
period 32 configuration, the experimental results show that the
compression performance of neural video codecs (DVC_Pro
[13], [14], M-LVC [18], RLVC [20], DCVC [16], CANF-
VC [17], TCM-VC [19], HEM [21]) is greatly reduced while
their framework still achieves an average 13.4% RGB BD-rate
reduction against VIM-IPP in terms of PSNR and achieves
about 48.0% BD-rate reduction in terms of MS-SSIM.

DCVC-DC [24]: Based on HEM [21], DCVC-DC further
increases the context diversity in both temporal and spatial
dimensions by introducing the group-based offset diversity and
quadtree-based partition. Under intra period 32 configuration,
the experimental results show that the compression perfor-
mance of neural video codecs (DVC_Pro [13], [14], DCVC
[16], TCM-VC [19], HEM [21]) is greatly reduced while
their framework still achieves an average 17.8% RGB BD-rate
reduction against VIM-IPP in terms of PSNR and achieves
about 47.6% BD-rate reduction in terms of MS-SSIM.

DCVC-FM [27]: Based on DCVC-DC [24], DCVC-FM
exploits the training with longer video and proposes a pe-
riodically refreshing mechanism. Besides, it modulates the
latent feature via the learnable quantization scaler to support
a wide quality range in a single model. Under intra period
32 configuration, the experimental results show that the com-
pression performance of neural video codecs (DVC_Pro [13],
[14], RLVC [20], DCVC [16], CANF-VC [17], TCM-VC
[19], HEM [21], DCVC-DC [24]) while their framework still
achieves an average 20.3% RGB BD-rate reduction against
VTM-IPP in terms of PSNR. Under intra period 96 configura-
tion, DCVC-FM can also achieve on average 25.3% and 38.3%
YUV BD-rate reduction, respectively, against VITM-IPP and
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DCVC-DC in terms of PSNR.

B. Settings of Evaluative Image/Video Compression Methods

Here we mention the test instructions of each test im-
age/video compression schemes in detail.

BPG:

{input file name} -q={qp}
--o={bitstream file name}
Factorized Model:
--inputPath={data path} --outputPath={bin path}
--ckptPath={checkpoint path} --model_id={model ID}
Hyperprior Model:

--inputPath={data path} --outputPath={bin path}
--ckptPath={checkpoint path} --model_id={model ID}
Autoregressive Model:

--inputPath={data path} --outputPath={bin path}
--ckptPath={checkpoint path} --model_id={model ID}
Cheng2020:

--inputPath={data path} --outputPath={bin path}
--ckptPath={checkpoint path} --model_id={model ID}
ELIC:

--inputPath={data path} --outputPath={bin path}
--ckptPath={checkpoint path} --model_id={model ID}
MLIC++:

--inputPath={data path} --outputPath={bin path}
--ckptPath={checkpoint path} --model_id={model ID}
iWave++ of IEEE 1857.11:
--inputPath={data_dir}
--ckptdir={ckpt_dir}
--cfg={encode_iWave_lossy.cfg}
--outlog={enc_time_log}

VVC Test Model (VIM-13.2, LDB):

- {config file name} --c={input sequence cfg}
--InputChromaFormat=444
--FramesToBeEncoded={encode frame number}
--InputBitDepth=10 --OutputBitDepth=10
--OutputBitDepthC=10 --DecodingRefreshType=2
--IntraPeriod=32 --Level=6.2 --SourceWidth={widrh}
--SourceHeight={height} -QP={gp}
--BitstreamFile={bitstream file name}

HEVC Test Model (HM-16.7, RA):

-c {config file name} --c={input sequence cfg}
--InputChromaFormat=444 --f={encode frame number}
--InputBitDepth=8 --SourceWidth={widrh}
--SourceHeight={ height} -QP={¢p}
--b={bitstream file name}

DVC_Pro:

--i_frame_model_name=cheng2020-anchor
--i_frame_model_path={model path}
--model_path={model path} --test_config={test config}
--cuda={GPU number} --w={CPU worker number}
--write_stream=0 --output_path={output path}
CANF-VC:

--Iframe=BPG
--motion_coder_conf={conf _dir}

--f={chroma format}

--outputPath={bin_dir}
--model_id={model ID}

--MENet=PWC

--cond_motion_coder_conf={conf_dir}
--residual_coder_conf={conf_dir}
--dataset={dataset_dir} --seq={seq_dir}
--seq_len={seq_len_num} --dataset_path={daraser_path}

--Ilmda=20438 --model_dir={model_dir}
--bitstream_dir={bitstream_dir} —action=compress
-GOP=32

DCVC:

--i_frame_model_name=cheng2020-anchor
--i_frame_model_path={model path}
--model_path={model path} --test_config={test config}
--cuda={GPU number} --w={CPU worker number}
--write_stream=0 --output_path={output path}
--model_name=DMC_conditional_coding

TCM-VC:

--i_frame_model_name=IntraNoAR
--i_frame_model_path={model path}
--model_path={model path} --test_config={test config}
--cuda={GPU number} --w={CPU worker number}
--write_stream=0 --stream_path={stream path}
--output_path={output path} --verbose=0

DCVC-HEM:

--i_frame_model_name={model path}
--model_path={model path}
--test_config={rest config}
--w={CPU worker number}
--output_path={output parh}
--force_frame_num=96
OOFE:
--model_path_i={model path}

--rate_num=4
--cuda={GPU number}
--write_stream=0
--force_intra_period=32

--model_path_p={model path} --rate_num=4
--test_config={dataset json} --cuda={GPU number}
--worker={ CPU worker number} --calc_ssim=1

--write_stream=0 --output_path={output json}
SDD:

--model_path_i={model path}
--model_path_p={model path}
--test_config={dataset json} --cuda={GPU number}
--worker={ CPU worker number} --calc_ssim=1
--write_stream=0 --output_path={output json}

VNVC:

--i_frame_model_name=IntraNoAR
--i_frame_model_path={model path}
--model_path={model path} --test_config={test config}
--cuda={GPU number} --w={CPU worker number}
--write_stream=0 --stream_path={stream path}
--output_path={output path} --verbose=0
DCVC-DC:

--model_path_i={model path}
--model_path_p={model path}
--test_config={dataset json} --cuda={GPU number}
--worker={ CPU worker number} --calc_ssim=1
--write_stream=0 --output_path={output json}
DCVC-FM:
--model_path_i={model path}
--model_path_p={model path}
--test_config={dataset json}

--rate_num=4

--rate_num=4

--rate_num=4
--cuda={GPU number}
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--write_stream=0
--force_intra_period=32

--worker={ CPU worker number}
--output_path={output json}
--force_frame_num=96

SPECIFIC PERFORMANCE OF EVALUATIVE ADVANCED

IMAGE/VIDEO COMPRESSION SCHEMES ON USTC-TD

Here we supply the specific rate-distortion (RD) curves
of advanced image/video compression schemes on USTC-TD
dataset under different metrics (Section V.B of main text). The
results of USTC-TD image dataset are mentioned in Fig. 1,
Fig. 2, and Fig. 3, Fig. 4. The results of USTC-TD video
dataset are mentioned in Fig. 5, and Fig. 6.
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Fig. 1. Specific rate-distortion (RD) curves of advanced image compression schemes on each evaluative image of USTC-TD 2022 under PSNR metric.



| — “ | 4 - 2.
44, /
//./ 2 o = = 2 /./ .
. Pr. e . . / //
~ — " S = “ P
g, ﬁ o4 — [ / @ ® 73 3 36, /
=z 4 = 2 = y =
p V yd = M 7 — < " = > Yy =
g /. B 7 TR 1% 7 T | = s
& 3800 / / —e— H266IVC & p. / / e H266/WVC I /5 /'/ e H266/WC & W o H266MVC
o = e e et el il
/ tmh | e g e % s I/ =
3600 o~ Hyperprior o~ Hyperprior 32 o~ Hyperprior o~ Hyperprior
T 5 b 7, e | 2000] ke
/ e o Vv o sd o e ol i
—e- EUC e EUC 3000 Y/ o ELC 26 e ELC
204 e 0001 & = e o il e
bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp)
(a) USTC-2023-01 (b) USTC-2023-02 (¢) USTC-2023-03 (d) USTC-2023-04
2 o | e 42 [
" 2 L 4.
a0 * | 1
|~ w0 ‘/7‘; w“ | e o /.
38, - / " . . ¥ //' e | o] = //
. Z o s % p= s //
S %/ g L~ N A % R ﬁ
-4 -9 & 4
£ 2, T, |Ew v ELL WS T T A J7 TE.
& // —e— H266MVC & / —e— H266/VC &3 /'r —&- H266/VC e o H.266VVC
o Ny p o I/ = s = e
3200 ,/v —e Factorized 3400 ~e— Factorized 36 —e— Factorized 32. ~e— Factorized
. el % / g v < e 7% T
~#~ Cheng2020 32, Cheng2020 . J o ~&~ Cheng2020 J ~e— Cheng2020
=i 7 e o 4 payi
e g " = e g
zs
Fr— S TR ra— Y Y R TR TS TR SR TR ER TR o D
bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp)
(e) USTC-2023-05 (f) USTC-2023-06 (g) USTC-2023-07 (h) USTC-2023-08
aa. e 4. /4 /’0 . | =
. . 2 L ° == ,ﬁ//
-
= w = = |- ==
N
s T 5., o 2w A s o
E > = 7 S = T
&~ o~ 3 / &
g AP T |Ewe] A pa- - 7 T |Fae T o
A 36, —e— H.266/WWC A ~e— H.266/VWC & —&~ H.266/VWC & ~— H.266/WWC
/ o avers // = ivavers /f Vi o wavers / = Wavers
yd o P M il 3100 el I/ o Pt
3400 f = Hyperprior / /4 - Hyperprior f{ - Hyperprior ! e Hyperprior
/ o Autoregressive o Autoregressive o Autoregressive o Autoregressive
52001 & o e '{ o el ‘.' 4 o e 3 S euc
(] o muCs+ e muCs+ e mucH+ H o mUCHs
M
o o P T o 5 os P ) TR PR TR} TR TR
bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp)
(i) USTC-2023-09 (j) USTC-2023-10 (k) USTC-2023-11 (1) USTC-2023-12
L 44, — | — L.
42, 42, —
L— L—
40, /'/ — el 2. sl % /'/ | o 42. /‘
/ / w T - /
e 7
g e g P g g
2 o~ 2., Pl g /%/ 2
P / = = =
% ] S S A S P /3 S / ==
& / / e HaseWC | = 36 o nasswve | = e H2eswVC | & 3800 - H2B5WVC
. i /4 e o T
A(’ e B % e o Lo Toparpir P o Mo
20 = { / = ereerive o ® =
—e- ELC .‘f‘ o e ELC ‘; e ELC —e- ELC
28. L ~&— MLIC++ ~&— MLIC++ ~®- MLIC++ ~®— MLIC++
o o o T T R S S VI PR o YR o P TR TR TRy PR T TR T
bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp)
(m) USTC-2023-13 (n) USTC-2023-14 (o) USTC-2023-15 (p) USTC-2023-16
a2 T ///. 4 T a2 o
e o = i e
e = ] - — -
// %{/i e L— 2 L % L
- ~ o -
g A . g / B / = Eu /r/
£, g g 2
o ¥ o ors = oo 25, - s o /{/ - o
z / o BPGad z o BPGAdL & ¥/ L~ o BPGadL Z 3600 4 - BPGAM
£ T e | £ 300 o e (| £ A/ o b || £ / o R
s600{ | T overs o overs 2600 o Mavers / 2 et
f / —e— Hyperprior / —e— Hyperprior / —e— Hyperprior 3400 —e— Hyperprior
b M b o Dryhun
34 —e— Cheng2020 —e- Cheng2020 34 prrd —e- Cheng2020 j e Cheng2020
£/ mayeis / By 7’/ B ol § .
paf vl . = e = T
P I R S R S — s ob ok o ok b ok ok o o o o P
bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp)

(q) USTC-2023-17 (r) USTC-2023-18

Fig. 2. Specific rate-distortion (RD) curves of advanced image compression

(s) USTC-2023-19

(t) USTC-2023-20

schemes on each evaluative image of USTC-TD 2023 under PSNR metric.



LI et al.: USTC-TD: USTC TEST DATASET FOR IMAGE AND VIDEO CODING IN 2020S

MS-SSIM

MS-SSIM

MS-SSIM

MS-SSIM

— \ . — \ [ —
o = / / | #’ //
74 o /o i
/ = = / = /)
1z 7 oo g 12
094 e BPG 2 097 — BPG 2 f —e- BPG 2 - BPG
Y/ T |2 e T |2 T |2 T o
T / TR Bl ¥ The B = R
B I pett) il e | = e
o Hyperprior { / o Hyperprior oo 4] o Hyperprior / - Hyperprior
o =5 e o Ao - ] o Ao
S N BC ey ) he, .,
o 0.2 04 0.6 08 0.1 03 0.4 0.5 06 0.00 0.05 0.10 0.15 0.20 025 030 035 0.1 0.2 03 .4 0.5 0.6 0.7 08
bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp)
(a) USTC-2022-01 (b) USTC-2022-02 (c) USTC-2022-03 (d) USTC-2022-04
.
T —— — S —
o Last—22"—0—* | " —— L,
f;:fd—;//. ) % % — G |
o. //
/ " o / /f’
) Ve o B 7 A
e w8 e |7 7 s
f —e— BPG444. e BPG444. e~ BPG444. 0.97 ~o- BPGA44.
f]{} / T B /) e B e B i
—o— Factorized ‘ —o— Factorized —e- Factorized e Factorized
/ e e T el ] e ¥ s
e, 1 el ¥ s T
bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp)
(e) USTC-2022-05 (f) USTC-2022-06 (g) USTC-2022-07 (h) USTC-2022-08
" 3 "
. [ I — — SR — R —
e | | = j‘"/'/. * e —=
, == 7 o A
iy = < 7 M i
W 08 Va 097 g’r/
= = 7 =
o / z // Zo 7 Z 007
s : S : —— : —
TRe el [ T e | Ui T 2 7 ’,i/ / T
oos / o o] g W / o vt 4 ol
{ T R el I = s { T e
el I ot i o e | T
o o T
T sej | e, ! Toel
bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp)
(i) USTC-2022-09 (j) USTC-2022-10 (k) USTC-2022-11 (1) USTC-2022-12
‘ I Te [ o [ o
o Lo—t—p—]
, e P [~ e -
N = / > 0994 T R i e
;// o8] “ ] 7 A
7 o Y VAV = v
z g =
. o ore 2 - o 4 yd - o % 4 - orc
/ e BPGA44 E 0.04 o BPGA44 E 0974 o BPGA44 g 007 —e— BPGA44
.y [l e | oe / / el i ff j / g
] sl | o et # Bl IS .
0[ e~ Cheng2020 ~#— Cheng2020 { ~e- Cheng2020 o. ~#~ Cheng2020
e BT : S I B e
bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp) bits per pixel (bpp)
(m) USTC-2022-13 (n) USTC-2022-14 (o) USTC-2022-15 (p) USTC-2022-16
L [ T S I ——— ot
: 7 , T A
- y Y /% :
¥ S0 S 0o 7 / . j /
. = = =
[ 884 ek Bl Bl Y e B e
0 T 2 1// ]7 2 T (2 e
/7 e = e F Bt
007 d o iWaver+ 093 J 0ss e o Wavers o iWaver+
0.97 M ~®— Autoregressive ~#~ Autoregressive 0.94 ~®- Autoregressive ~®~ Autoregressive
T Cepanto e l/ = G| oo =t
,
o] [o Motre ] o e t ESpran ! T e

15 0z oz
bits per pixel (bpp)

(q) USTC-2022-17

0z 03
bits per pixel (bpp)

(r) USTC-2022-18

0z 03
bits per pixel (bpp)

(s) USTC-2022-19

015 0% o3
bits per pixel (bpp)

(t) USTC-2022-20

Fig. 3. Specific rate-distortion (RD) curves of advanced image compression schemes on each evaluative image of USTC-TD 2022 under MS-SSIM metric.
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Fig. 4. Specific rate-distortion (RD) curves of advanced image compression schemes on each evaluative image of USTC-TD 2023 under MS-SSIM metric.



LI et al.: USTC-TD: USTC TEST DATASET FOR IMAGE AND VIDEO CODING IN 2020S
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Fig. 5. Specific rate-distortion (RD) curves of advanced video compression schemes on each evaluative video of USTC-TD 2023 under PSNR metric.
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Fig. 6. Specific rate-distortion (RD) curves of advanced video compression schemes on each evaluative video of USTC-TD 2023 under MS-SSIM metric.
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