Uniformly Accelerated Motion Model for Inter Prediction

Zhuoyuan Li, Yao Li, Chuanbo Tang, Li Li, Dong Liu, Feng Wu* University of Science and Technology of China (USTC), Hefei, Anhui 230027, China {zhuoyuanli, mrliyao, cbtang}@mail.ustc.edu.cn, {lil1, dongeliu, fengwu}@ustc.edu.cn

Intelligent Visual Data Coding Lab

1. Contributions

1. To the best of our knowledge, we are the first to introduce the *uniformly accelerated motion model* (UAMM) to improve the performance of inter prediction.

2. To adapt to the video coding framework, we formulate the usage of UAMM, and *propose the UAMM-based* parameter derivation and extrapolation schemes in the predictive process.

3. We integrate the uniformly accelerated temporal motion model into existing inter modes (Merge, MMVD, CIIP) of VVC to *achieve higher prediction accuracy*.

Motion trajectory between the coding (to-be-coded) block and reference (reconstructed) blocks in previous reference frames.

$$\boldsymbol{v}\left(t\right)=\boldsymbol{v}_{0}+\boldsymbol{a}\cdot t,$$

Integrated into **Coding Process** $oldsymbol{m}oldsymbol{v}_0 = oldsymbol{v}_0 \cdot oldsymbol{T}_0 + rac{1}{2} \cdot oldsymbol{a} \cdot oldsymbol{T}_0^2, \ oldsymbol{m}oldsymbol{v}_1 = oldsymbol{v}_1 \cdot oldsymbol{T}_1 + rac{1}{2} \cdot oldsymbol{a} \cdot oldsymbol{T}_1^2,$

 $\boldsymbol{v}_1 = \boldsymbol{v}_0 + \boldsymbol{a} \cdot \boldsymbol{T}_0,$

Accelerated Model Parameter Derivation

$$m{a} = rac{2 \left(m{m} m{v}_1 \cdot m{T}_0 - m{m} m{v}_0 \cdot m{T}_1
ight)}{m{T}_0 m{T}_1 \left(m{T}_0 + m{T}_1
ight)}, \ m{v}_0 = rac{m{m} m{v}_0 - rac{m{a} \cdot m{T}_0^2}{2}}{m{T}_0}.$$

4. Framework

The proposed uniformly accelerated motion model-integrated inter prediction framework

5. Experiment Results

Coding Performance and Relative Complexity Based on VTM-12.0 under LDP Configuration

Class	Sequence	Low-delay P			
Class	Name	Y	U	V	
	MarketPlace	-0.11%	0.43%	0.47%	
ClassB (1920x1080)	RitualDance	0.01%	0.10%	-0.04%	
	Cactus	-0.10%	-0.27%	-0.02%	
	BasketballDrive	-0.12%	0.05%	-0.03%	
	BQTerrace	0.03%	0.01%	-0.04%	
	BasketballDrill	-0.16%	0.22%	0.02%	
ClassC (832x480)	BQMall	-0.02%	-0.09%	-0.20%	
	PartyScene	-0.05%	-0.28%	0.24%	
	RaceHorsesC	0.06%	-0.46%	0.70%	
	BasketballPass	-0.16%	0.44%	-0.85%	
ClassD	BQSquare	-0.14%	-0.54%	-0.53%	
(416x240)	BlowingBubbles	-0.15%	-0.82%	-0.12%	
	RaceHorses	-0.28%	0.34%	-1.02%	
ClassE	FourPeople	-0.35%	-0.49%	-0.43%	
	Johnny	-0.38%	0.29%	-1.23%	
(1200X/20)	KristenAndSara	-0.08%	0.27%	0.14%	
0	verall	-0.13%	-0.05%	-0.17%	
EncT			101%		
DecT			102%		

BD-Rate Results (Y Component) Compared to VTM-12.0 on Specific Scenes

Sequence	Resolution	LDP (%)		
Beauty	1080P	-0.16%		
Jockey	1080P	-0.19%		
WestLibrary	1080P	-0.15%		
<i>WestLabBuilding</i>	1080P	-0.21%		
CrossRoad	1080P	-0.14%		
CrossRoad2	1080P	-0.12%		
Overall	-0.16%			
EncT	101%			
DecT	103%			

BD-Rate Results of Some Sequences Based on VTM-12.0 under LDP Configuration

In-Loop Filtering via Trained Look-Up Tables

(Oral Session 9, 15:30–17:00) Zhuoyuan Li, Jiacheng Li, Yao Li, Li Li, Dong Liu*, Feng Wu

Contribution: 1. We study an efficient in-loop filtering scheme by adopting look-up tables (LUTs). 2. Our method has *explored a new and more* practical approach for neural network-based Coding Tools. **Basic idea:** Adopting the look-up operation of LUT to replace the inference process of deep neural network (DNN) in coding process, which is friendly for embedded systems to accelerate computation with far fewer floating-point operations. **Scheme:** To achieve this goal, we establish a LUTbased in-loop filtering framework (*LUT-ILF*), and introduce a series of LUT-related modules to strengthen its efficiency, including the enhancement of filtering reference range with the limited LUT size (*progressive indexing and reference indexing*), the optimization of LUT size with limited memory cost (*clipping / finetuning*), the selection of reference pixels (*learnable* weighting).

Sequence	BQMall	BQSquare	Johnny	BlowingBubbles	BasketballPass
BD-rate	-0.19%	-0.35%	-0.11%	-0.11%	-0.15%

Conclusion: UAMM can efficiently deal with some complex scenarios that **TMVP and** *SbtMvp of VVC* are difficult to address.

Basic framework of look-up table-based in-loop filtering framework (LUT-ILF)

Experiment Results: Compared to the low/high complexity operation point setting (LOP, HOP) of *NNVC-ILF*, our ultrafast mode (*LUT-ILF-U*, reference range: 5×5, 0.13 kMAC/pixel, 164 KB), very fast mode (*LUT-ILF-V*, reference range: 9×9, 0.40 kMAC/pixel, 492 KB) and fast mode (*LUT-ILF-F*, reference range: 13×13, 0.93 kMAC/pixel, 1148 KB) provide a series of new trade-off points that show lower time and computational complexity and good performance beyond VVC.

Methods	BD-Rate (AI)	BD-Rate (RA)	Computational Complexity	Storage Cost	Energy Cost ²	Time Complexity (enc/dec, CPU)	Homepage: htt	ps://zhuoyuanl	i1997.github.ic
NNVC-I OP ¹ (VTM-11.0)	-4 61%~-4 78%	-5 20%~-5 37%	17.0 kMACs/nivel	129.98 KB (int16)	11900 pJ (int16)	108%/4717%~109%/4724% (AI)			
	-4.01 /0/ -4.70 /0	-5.20105.5110		228.33 KB (float)	78200 pJ (float)	114%/8274%~114%/8322% (RA)	لکا : ···· ··· ··· ··· ··· لکا ····· · · · · · · · · · · · · · · · ·		
NNVC-HOP ¹ (VTM-11.0)	-7 79%~-7 91%	-10 12%~-10 31%	477.0 kMACs/pixel	2826.2 KB (int16)	333900 pJ (int16)	133%/24372%~276%/134057% (AI)			
	-1.1970, -1.9170	10.12 /0/ 0-10.51 /0		7444.5 KB (float)	2194200 pJ (float)	159%/43509%~399%/227720% (RA)			
LUT-ILF-U (VTM-11.0)	-0.13%	-0.10%	0.13 kMACs/pixel	164 KB (int8) ³	180.2 <i>pJ</i>	101%/102% (AI), 101%/105% (RA)			
LUT-ILF-V (VTM-11.0)	-0.34%	-0.27%	0.40 kMACs/pixel	492 KB (int8)	497.2 <i>pJ</i>	102%/103% (AI), 103%/106% (RA)			
LUT-ILF-F (VTM-11.0)	-0.51%	-0.39%	0.93 kMACs/pixel	1148 KB (int8)	1163.25 pJ	102%/106% (AI), 104%/108% (RA)	WeChat	QQ	LinkedIn

Contact: zhuoyuanli@mail.ustc.edu.cn

