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Basic tool for Motion Compensation

Two step: 1 full pixel
2 Fractional pixel (1/2, 1/4)

Fractional pixel reason: Due to the inherent spatial
discretization of digital video, block translation may

not happen to be aligned with pixels.

Finite impulse response (FIR) filters are used for
luma and chroma interpolation in HEVC and VVC.
The coefficients of the FIR filters are designed
using a Fourier decomposition of the discrete
cosine transform (DCTIF). Three kinds of tap are

supported: 8-tap, 4-tap.
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Half-pel refinement

" -~ d 1y - o _ )
xExtDIFUpSamplingH (&cPatternRoi, cStruct. \IseﬂlthelIf) ; Pel cl8l; .
I c[0] = coeff[0];

rcMvHalf = rcMvInt; rcMvHalf <<= 1; // for mv-cost c[1] = coeff[1];
Mv baseRefMv (0, 0); E if( N> 4)
ruiCost = xPatternRefinement (cStruct. pcPatternKey, baseRefMv, 2, rcMvHalf, (!pu.cs->slice->getDisableSATDForRD())): {
quarter-pel refinement C[Ej - C’De:_'f[g];
if (cStruct. imvShift == IMV_OFF) c[3] = coeff[3];
{ }
m_pcRdCost->setCostScale(0) : = if(N>>=6)
(EX CPALTErNR01, LCuvhalit), B I )
haseRefMv = rcMvHalf; I - B
| RCERE c[4] = coeff[4];
c[5] = coeff[5];
rcMvQter = rcMvInt; }
rcMvQter <<= 1; // for mv-cost — s —
reMvQter += rcMvHalf; = lf{ N 8 J
relvQter <<= 1; { )
ruiCost = xPatternRefinement (cStruct. pcPatternKey, baseRefMv, 1, rcMvQter, (lpu.cs—>slice->getDisableSATDForRD())): c[6] = coeff[6] ;
¥ } c[7] = coeff[7];
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Basic tool for Motion Estimation

« Search range | ' e
« Full search guarantees the best MV (reference block), AN
but leads to unfordable computation consumptions i) : 1

« Fast search algorithms provide a trade off ‘ HPN
+ log search, three-step search, TZSearch K N e
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Basic tool for Motion Estimation

Full pixel to fractional pixel: More accurate MV and prediction
 Interpolation is required to obtain the reference pixel values at fractional pixel position
« Supported motion vector resolution:

« Regular MV: 4pel, 1pel, 1/2pel, 1/4pel

« Affine MV: 1/16pel, 1/4pel, 1 pel
- FIR

Merge: Remove the redundancy of MVs of adjacent blocks
 Basic idea: Deduce a list of probable MVs using decoded adjacent blocks' motion
information (no bits transmitted), then signal a index to indicate which one is used
« MVP candidates setup
 Spatial, Temporal, Previous coded ...



Inter prediction math paradigm

In a video codec, the encoder is now responsible for
searching thelbest matching motion vector t* |f0r each block
that leads to the best possible quality at the [owest possible rate

in a process called rate-distortion optimization [23]. A motion

compensated or predicted image Ip.q € RY*VY" can then be
obtained both at the encoder and at the decoder by extracting

the motion compensated pixel values from the reference image
as

Ipred(p) - Iref(mt(p:t*)) Vpe B (3)

for all blocks in the image, where B denotes the set of pixel
coordinates within the regarded block Beq, and I er € RUXV
describes the reference image. Thereby, I(p) yields the pixel
value of image I at pixel coordinate p. Internally, a suitable
interpolation method is required in order to access pixel values

at fractional pixel positions.



Basic tool for Motion Estimation

Merge: Remove the redundancy of MVs of adjacent blocks
» MVP candidates setup (6 MVPs) B, B |5
1. Spatial candidates
« B1->A1->B0->A0->B2
« 4 MVPs at most

2. Temporal candidates
CO->C1 (in ColPic), to get more info form bottom right corner A
Temporal scaling is required

3. HMVP: Previous coded CUs Y
4. Pair-wise average candidates | F—
5. 0 MV e
» Skip E
 Skip the residual coding, only for merge mode Co
« MMVD: Merge mode with MVD
« MVD indicated simply by direction index and offset index

Current PU

cql_ref  cuyr_ref curg pic colj pic

curr_CU col_CU

C—




Inter prediction math paradigm

a crucial component of any modern hybrid video codec,
where the term hybrid refers to a combination of predic-
tive and transform-based coding. Typically, the current frame
I € RV of size U x V pixels to be coded is subdivided
into individual blocks B, € RM*¥ of size M x N pixels and
each block is coded individually. In a first step, a prediction
Bpea € RM*Y is formed for each block based on its causal
spatial and temporal neighborhood. Most video codecs allow
either intra (spatial) or inter (temporal) prediction for a given
block.

In a second step, the residual signal By, € R *N between
the predicted block Bpq and the actual block B,

Bres — Bcur - Bpred- (l)

is converted to a transform domain and the resulting signal is
quantized and entropy coded [1], [2], [4].

At the decoder, the prediction is formed analog to the
prediction procedure at the encoder, before the decoded resid-
ual is added to the prediction yielding the reconstructed

block Ecur e RM*N To ensure that both the encoder and the
decoder are able to arrive at the same prediction, additional

side information is signaled to control the prediction proce-
dure. As such, a flag indicates whether intra or inter prediction
is used and further control mechanisms specify additional
prediction information. In traditional inter prediction, this
prediction information includes motion information that is
shared by all pixels within the block. The precise motion
information that needs to be signaled depends on the applied
motion model.

Using the translational motion model

my(p,t) =p +1t, (2)

the motion 1s described by the motion vector
t = (Au, Av)T € R? that shifts the pixel coordinate
p = (u,v)T € R? by Au pixels in horizontal u-direction and
Aw pixels in vertical v-direction.




Different ideology about Paper
Motion modeling (L. Li & Y. Li)

Geometric Partitioning (Me)

360-Degree coding (L. Li, Y.F Wang)

Fractional enhancement & fast algorithm (N. Yan)

NN-based enhancement (S. Huo)

Reference Generation & Clip & Background (S. Huo, C.Y Ma, F.D Chen)
Multi-hypothesis Prediction
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Motion Vector Refinement

9 Texture Synthesis (K. Yang)

10 Energy-Aware Quality Optimization
11 Template Matching



Different ideology about Paper

1 Motion modeling

« An Efficient Four-Parameter Affine Motion Model for Video Coding** (Li Li)

« Global Homography Motion Compensation for Versatile Video Coding** (Yao Li)

2 Geometric Partitioning

« Geometric Partitioning Mode in Versatile Video Coding** (Han Gao, Tencent America)
« Object Segmentation-Assisted Inter Prediction for Video Coding** (Zhuoyuan Li)

3 360-Degree coding

« Motion-Plane-Adaptive Inter Prediction in 360-Degree Video Coding**(Andre Kaup)
4 Fractional enhancement

« Cnn-based invertible half-pixel interpolation filter for video coding (Ning Yan)

« Invertibility-driven interpolation filter for video coding (Ning Yan)



NN-based enhancement
Cnn-based motion compensation refinement for video coding** (Shuai Huo)
Deep Affine Motion Compensation Network for Inter Prediction in VVC** (Dengchao Jin, TJU)

Reference Generation

Deep Network-Based Frame Extrapolation With Reference Frame Alignment** (Huo Shuai)

Multi-hypothesis Prediction
Multi-Hypothesis Prediction for Video Coding (Zhao Wang, PKU)

Energy-Aware Quality Optimization
Optimized Decoding-Energy-Aware Encoding in Practical VVC Implementations (A. Kaup, FAU)



Motion modeling

An Efficient Four-Parameter Affine Motion Model
for Video Coding

Li Li, Houqiang Li, Senior Member, IEEE, Dong Liu, Member, IEEE, Haitao Yang, Sixin Lin, Huanbang Chen,
and Feng Wu, Fellow, IEEE
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Affine Motion Model
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Motion Model
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* translation, zooming, rotation, shear mapping
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Motion Vector Coding

1. Merge

»MVPH|ZRAEVEN (5IIMVP)
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Motion Vector Coding

1. Merge

> MVPHI =AY

¢ 1.2 /I
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CPMV1

Current block

CPMV3

CPMV?2

A0

¢« 1.3 FEMVER
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> CPMV1 ~ CPMV4ZBi#{Tmerge
» CPMV1: B2->B3->A2
» CPMVZ2: B1->B0

» CPMV3: A1

->A0

> CPMV4: M\eiENEN I ZH{Tmerge
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5 CPMV1 CPMV2 =
6 CPMV1 S(CPMV1, CPMV3) =




Motion Vector Coding

1. AMVP: MVP + MVD
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Motion Compensation

B

A4 RHTIBEINHME

- BZE 5xMEREE [B)AYtrade off
>R EMNERE

Ao S a, , | 2. A A
4‘,';. A» a5y | Bon ) ‘_‘L_A.u. A!D
d 10 ‘Iu.. € .’m, ‘/1.‘ ‘/_m
h_, hy, i k, h, h,,
Mo Moo | Poo Yo y | Mo L
4-;.: A\l oy b, \ ‘du Ay,
T O i it
= -

(ERBE)

Vo v,
. A
b >
*
D\ »
LT A
A
~ N
e
MV Tap filter
0 0 0 64 0 0 0
1/16 1 -3 63 4 -2 1
1/8 1 -5 62 8 -3 1
3/16 2 -8 60 13 -4 1
1/4 3 -10 58 17 -5 1
5/16 3 -11 52 26 -8 2
3/8 2 -9 47 31 -10 3
7/16 3 -11 45 34 -10 3
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Motion modeling

Global Homography Motion Compensation for
Versatile Video Coding

Yao Li, Zhuoyuan Li, Li Li", Dong Liu, Hougiang Li

Camera Motion




Motion Model
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Motion Model
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Motion Estimation & Motion Compensation

Global Motion
Estimation (A)

Bitstream Parameters
Prediction

N

GHMC Flag | Subblock-based MV MVs | Motion
Derivation (B) Compensation (C)

Syntax Parse

- - = e

/
' (B) Subblock-based MV Derivation (C) Motion Compensation
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Geometric Partitioning

Geometric Partitioning Mode 1in Versatile Video
Coding: Algorithm Review and Analysis

Han Gao, Semih Esenlik, Elena Alshina, and Eckehard Steinbach, Fellow, IEEE

(b) 128 x 128 CTU (c¢) Rectangular partition  (d) Geometric partition
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(b) 128 X 128 CTU (c) Rectangular partition  (d) Geometric partition

This is because objects typically exhibit movement relative to a static background or other moving objects,
and object boundaries in natural sequences rarely adhere to rectangular block patterns. As shown in Figure,
finer block partitions are required when approximating moving object boundaries using rectangular blocks,
which increases the rate overhead for signaling the partition and the prediction syntax elements for these
blocks. In addition, the approximated partitioning boundary rarely follows the actual motion field boundaries.
Consequently, the prediction error is higher, which increases the bitrate for residual signaling.



Partition Rule

Because the intrapicture predicted CUs in VVC can use
angular and non-linear prediction modes, the non-horizontal
and non-vertical edges are handled well. Therefore, the pre-
sented GPM focuses on the interpicture predicted CUs. When
GPM is applied to a CU, this CU is split into two parts by a

straight partitioning boundary. The location of the partitioning

boundary is mathematically defined by an angle parameter ¢

and an offset parameter p. These parameters are quantized

and combined into a GPM partitioning index lookup table.

The GPM partitioning index of the current CU is coded into
the bitstream. In total, 64 partitioning modes are supported
by GPM in VVC for a CU with a size of w x h = 2F x 2!
(in terms of luma samples) with k,I € {3...6}. Moreover,
GPM is disabled on a CU that has an aspect ratio larger than
4:1 or smaller than 1:4, because narrow CUs rarely contain
geometrically separated patterns.

Definition of the partitioning boundary

E> Quantization of angle parameter

Quantization of offset parameter



Partition Rule (Definition of the partitioning boundary)

1) Definition of the partitioning boundary: The partitioning
boundary is defined as a straight line that is geometrically
located inside the CU. The equation of this line is expressed
in Hessian normal form as

Te €0S(p) — Ye sin(p) + p =0, (3)

with (z.,y.) defining continuous positions relating to the
central position of the CU. In the example illustrated in
Fig. 6(.21-), the angle parameter ¢ in (3) describes the anti-
clockwise angle from the x-axis to the normal vector of the
partitioning bbundary, whereas the offset parameter p in (3) 1s
the displacement of the partitioning boundary from the origin
that is defined at the center of the CU. Note that the y-axis N
1s reversed to simplify the discretization of the partitioning
boundary. (a)

(a) Example of a Hessian normal form-based partitioning boundary




Partition Rule

(Definition of the partitioning boundary)
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discretization of the partitioning boundary.

The displacement d of an arbitrary position (z, y.) relative
to the partitioning boundary is used to derive the blending
matrices Wy and W;. Based on (3), the value of d is given as

d(mfi: yt) = T¢ CDS(({J) — Ye Sill({p) + p. (4)

As displacement is directional, the value of d can be positive or
negative. The sign of d indicates which partition the position
(z¢,yc) belongs to, whereas the magnitude of d is| equal to
the distance of (z.,y.) to the partitioning boundary.

m



Partition Rule (Quantization of angle parameter )

2) Quantization of angle parameter p: To achieve a rea-
sonable number of defined partitioning boundaries, the angle
parameter ¢ and offset parameter p have to be quantized. As
shown in Fig. 6(b), the angle parameter ¢ is quantized into
divided. Because the diagonal or anti-diagonal partitioning
boundaries are most frequently used in GPM, the quantized ;
is therefore designed with fixed tan(y;) values that are equal
to the possible aspect ratios of CU where GPM is applied.
For example, if GPM is applied on a CU with an aspect ratio
w/p = 1/2, the diagonal partitioning boundary is aligned with
the line of (3) defined by ¢; = arctan(l/2) and p = 0. In
!:he presgnted GPM algorithm, tan(p;) is limited as a value 207 S Heskm =
in {0,+1/4, +1/2, 41, +2. 00}. Note that the tangent values
of +4, which yield a near horizontal partitioning boundary,
are not included, because the near horizontal partitioning of a
motion field is less frequently used for natural video content.




Partition Rule (Quantization of offset parameter p )

3) Quantization of offset parameter p: Fig. 6(c) shows an
example of the offset parameter p quantization. The offset
parameter p is quantized into p; depending on the CU width
w and height h. The offset index 7 is defined in {0...3}.
To avoid unequally distributed partitioning boundary offsets 47fH{i7 7%
between different block sizes, the p; is first factorized with

pj = Pa,j €08(pi) — py,; sin(e;) (7)

or

pj = (pa,; - cosLutli]) > 3

0
+ (py,; - cosLut|(i + 8)%32]) > 3. (8)
The p. ; and p, ; are then coupled with w and A using
)0 i%16 = 8 or (i%16 # 0 and h > w)
P = +7-w/s otherwise
9)
and
) Ei-/s %16 =8 or (i%16 # 0 and h > w)
Py = 0 otherwise,

(10)



All types of partition & signal

- 7 / /

1= 30 1= 31

i1 =15

1= 16 1= 17 1= 18 1= 20 1= 22 i =24 1= 26

Fig. 7. Visualized examples of the 64 supported GPM partitioning modes grouped by identical angle index i; the offset indices j in each subfigure vary in
the range of {0...3}; the removed redundant quantized offsets are illustrated by dotted lines.

Several redundant quantized offsets, which are listed in
Table II, are removed in the presented GPM algorithm.
Therefore, the total number of GPM partitioning modes is
Nagpm = NN, — No/2 — 2 — 4 = 64 with N, = 20
and N, = 4. The GPM partitioning modes are visualized

TABLE II
REDUNDANT QUANTIZED OFFSETS AND CORRESPONDING REASONS

in Fig. 7, grouped by identical angles index 2. The dotted Modes Overlapped with Numbers
partitioning lines in Fig. 7 demonstrate the redundant modes i>16, j =0 i< 16, =0 No/o
that are not included in the presented GPM design. The i€{0,8}, j=0 BT split line 7

64 supported GPM partitioning modes are indexed by the i€ {0,8,16,24}, j =2 One of the TT split lines 4

syntax element merge_gpm_partition_idx that is coded into
the bitstream using the VVC entropy coding engine.




Motion Compensation

In the presented GPM algorithm, a soft blending process is
applied. That is, as shown in Fig. 8, ramped weighting values
in the range of (0,8) are used when the sample is located
inside the soft blending area (i.e., between the dashed lines);
otherwise, a full weighting value of 0 or 8 is selected. The
weighting values of individual sample positions in one of the

blending matrices are given by a ramp function as
0 d(ze,ye) < —7 :>
Voo ye = 9 %(d(mczyc:) +7) -7 <d(xe,y.) <71 (14)
k8 d(mczyc) ; T,

where 7 defines the width of the blending area. In the
presented GPM algorithm, 7 is selected as two samples. Based

Distance:

d(Zc,yc) = xe cos(p) — ye sin(p) + p. (4) >

Blending matrix Wy Blending matrix W;

dim,n) = ((m+ ps;) €1 —w+1) - cosLut|i]

+ ((n+py,;) €1 —h+1)-cosLut[(z + 8)%32],
(12)



Motion Estimation

Inspired by these, the GPM merge list 1s derived from the
regular merge list by the parity of the GPM merge index. That
18, for a candidate with an even value of the GPM merge index,
the MV, from reference picture list LO of the regular merge
list with corresponding regular merge index is used as the
GPM merge candidate. If MV, is not available, MV, from the

TABLE III
EXAMPLES OF REGULAR MERGE LIST AND GPM MERGE LIST

merge_idx 0 1 2 3 4 5

reference picture list L1 is used instead. Conversely, MV is
chosen as the default GPM merge candidate for an odd value of
the GPM merge index, and if MV is unavailable, MV 1s used
instead. Compared with other merge list construction methods
studied in [48], the index parity-based method directly extracts
the GPM merge candidates from the regular merge list without
pruning, which minimizes the implementation complexity.

Cand. MVy  MVy — — MVy MVy

MV; MV; MV; MV; MV; MV,

(a) Regular merge list

GPM_idxg; 0 1 2 3 4 5

Cand. MVy MV, MV, MV; MVy MV,

(b) GPM merge list



Motion Estimation

Instead of a texture-based or statistic-based geometric par-
titioning search method such as those presented in [11], [17]-
[20], a rate distortion optimization (RDQO)-based partitioning

encoder search is applied in the presented GPM algorithm.
Compared with the texture-based search methods, the RDO-

Entropy Coding

GPM SYNTAX ELEMENTS TABLE

based search more easily catches the geometrically sepa-

Syntax Descriptor

rated motion field that contains similar textures. Moreover,

the RDO-based search is more versatile than statistic-based

methods for different video content.
Assuming the signaled maximum number of GPM merge

candidates is six, each partitioning mode has in total 6 x5 = 30
motion information combinations because the GPM idxg and
GPM_idx; are not the same. As Ngpy = 64 partitioning
modes are designed in GPM, one out of 6 x 5 x 64 = 1920
combined GPM candidates of partitions and motion informa-
tion 1s to be selected by the encoder.

merge_data() {

if( !ciip_flag ){
merge_gpm_partition_idx ae(v)*
merge_gpm_idx0 ae(v)
if( MaxNumGpmMergeCand > 2 )
merge_gpm_idxI ae(v)
}

}

* Context-adaptive arithmetic entropy-coded syntax element.



Motion Estimation

1) Stage 1: For each unidirectional motion information
candidate of the GPM merge list, full CU MCPs over the six
GPM merge candidates are performed to obtain six rectangular
predictors the same size as the current CU. The sum of
absolute differences (SAD) in luma component between the Candidate Prepare & Selection
predictors and the original signal is calculated as SADcy «
with index & € {0...5}. Identical entries of the GPM
merge candidate list are excluded for this stage. If all motion
information in the merge candidate list is identical, the entire
GPM encoder search is aborted.




Motion Estimation

2) Stage 2: For each GPM partitioning mode, the parts
predicted by GPM_idx, of the six rectangular predictors are
masked out, using a hard blending matrix (i.e., only O or 8 is
selected as a weighting value, depending on the sign of the
displacement d(m,n).). The SAD in luma of these parts are
computed and denoted as SADpg;; with k =0...5and | =
0...63. Since the hard blending matrix (no blending area) is
used, the SAD of the parts predicted by GPM_idx; is obtained

by

SADpi1 k1 = SADcu,r — SADpo k.. (20) Rough Estimation

A combined rate-distortion (RD)-cost J, g, for the partition-
ing mode with index [, is given by

Jo.81 = SADpgas+ SADpy g1+ AM(Ra + Rp),  (21)

where o and 3 denote the predictor indices GPM_idxg
and GPM_idx;, and R, and Rg denote the corresponding
estimated motion rates. Both a and /3 belong to {0...5},

but &« = [ cases are excluded in the encoder search. The
combined GPM candidates are sorted by .J, 3;. Moreover,
GPM candidates with J,, g; > SADcuy i + AR}, are excluded,
where R 1s the estimated motion rate of the k-th GPM merge
candidate.




Motion Estimation

3) Stage 3: The best 60 (or less) combined GPM candidates
from stage 2 are used to conduct the soft blending process as
described in Section III-C to generate P in luma component.
The sum of absolute transformed differences (SATD) of luma
between GPM predictor Pz and the original signal for each
combined candidate is computed as SATDp¢ ;. The RD-cost
1s updated as

Jéx,,ﬁ,l = SATDpc, + MR, + Rg + Ry), (22)

Rough Estimation of SATD

where R; represents the estimated rate of the partitioning
index. The combined GPM candidates are sorted again by

1;, 5.~ In this stage, the lowest SATD costs of previously tested
coding tools, such as regular merge or affine, are used for early

termination.



Motion Estimation

4) Stage 4: The corresponding chroma component of the
best eight (or less) candidates from stage 3 is generated with
the soft blending process. Residual transform coding (if there
is a residual) and CABAC-based rate estimation are applied
on these candidates to obtain the accurate rate cost Rqapn that
incliides the r::ite foi motion, partitioning mode, and residual Refine Estimation of SSE
coding. The distortion over three components between these
candidates and the original signal is measured by the sum
of squared differences (SSD) as SSDpc ;. Finally, the GPM
candidate with the lowest overall RD-cost

w31 =9SSDpc, + ARcpum, (23)

1s selected as the final GPM mode.




Performance

GPM _Tool_Off (anchor: VTM 8.0) GPM _Tool_On (anchor: VTM 8.0 wfo VVC tools)

Sequence RA (%) LB (%) RA (%) LB (%)

Y U vV EncT DecT Y U vV EncT  DecT Y U vV EncT  DecT Y U v EncT  DecT
Tango 0.65 1.36 1.18 98 100 -1.17 -2.83 —2.60 123 99
FoodMarket 0.43 0.55 0.54 a7 98 —0.77 —0.93 —0.93 124 100
Campfire 0.21 0.15 0.63 97 99 —0.72 —0.80 —2.66 128 101
Average Al 0.43 0.69 0.7T8 97 99 —0.89 —=1.52 =2.06 125 100
CatRobot 0.68 0.99 1.11 97 99 —1.66 —2.87 —2.65 128 99
DaylightRoad 0.32 0.31 0.41 98 99 —1.26 =1.77 —1.43 127 08
ParkRunning 0.54 0.76 0.75 96 100 —1.16 —1.39 —1.49 130 99
Average A2 0.51 0.68 0.76 97 100 —1.36 —2.01 -—1.86 129 99
MarketPlace 0.42 0.77 1.05 a7 97 (.88 1.29 0.91 95 99 —0.77 —0.83 —1.37 130 100 —1.51 —1.79 —2.04 130 a7
RitualDance 0.56 0.86 1.17 97 97 1.01 1.11 1.30 95 102 —1.14 —1.88 —2.56 129 100 -1.73 —2.37 —2.92 131 99
Cactus (.66 0.76 0.95 97 98 1.45 1.71 1.92 94 103 —1.21 —1.46 =1.75 131 102 —2.87 —-3.11 -2.91 128 93
BaskethallDrive 0.27 0.94 0.87 97 97 0.86 1.70 1.45 95 98 —=1.01 =239 =1.90 130 100 —=1.75 —=3.45 —2.96 128 97
BQTerrace 0.30 0.28 0.31 a7 98 0.59 0.64 —=0.22 96 99 —1.07 —0.67 —0.56 131 101 —1.59 —0.96 —1.57 126 98
Average B 0.44 0.72 0.87 97 97 0.96 1.29 1.07 a5 100 —1.04 —1.45 -—1.63 131 101 —1.89 —2.34 —2.48 129 97
BaskethballDrill 1.16 1.88 1.91 96 102 2.39 3.45 3.03 93 98 =217 —3.35 —3.48 137 104 —3.68 —=5.06 —=5.50 136 102
BOMall 2.13 3.43 3.46 97 100 2.53 3.54 2.82 94 101 —-4.18 -5.28 =538 137 104 -4.76 —6G.04 =561 137 97
PartyScene 0.71 1.07 1.23 96 99 1.14 1.34 1.73 93 100 —1.84 —1.88 —=2.14 138 105 —2.87 =3.01 —-3.18 142 101
RaceHorsesC 1.40 2.30 2.07 96 101 1.73 2.45 2.86 93 100 —3.04 =5.93 —5.62 138 103 —3.44 —5.29 —-5.69 144 104
Average C 1.35 2.17 2.7 96 100 1.95 2.69 2.61 93 100 —2.81 —4.11 -—4.16 137 104 —3.69 —4.85 —=5.00 140 101
BasketballPass 0.80 2.53 1.45 96 99 1.65 3.38 3.09 93 102 =2.11 —4.29 —4.15 140 103 —3.94 =7.03 —6.24 148 109
BOSguare 0.13 0.13 1.18 97 98 0.84 1.69 0.10 95 103 —1.49 =1.10 -1.32 135 103 =3.13 =3.15 —1.42 143 106
BlowingBubbles 0.73 1.13 1.19 96 99 1.81 2.15 2.63 92 1056 —2.36 —-2.22 —=2.50 139 101 —4.55 —4.56 —4.98 142 102
RaceHorses 1.44 2.67 2.00 95 100 1.95 3.12 3.32 92 101 —3.49 —6.50 =5.63 143 100 —4.77 —6.78 —6.24 152 106
Average D* 0.77 1.62 1.45 96 99 1.56 2.59 2.28 93 103 —-2.36 =3.53 =3.40 140 102 —-4.10 =5.38 —4.72 146 106
FourPeople 1.84 1.83 1.37 95 101 -4.23 —-4.24 -4.74 128 97
Johnny 2.51 0.95 1.45 98 100 —6.09 —5.29 =532 126 104
KristenAndSara 1.71 0.62 0.97 96 101 —5.52 —4.20 —3.60 129 101
Average E 2.02 1.13 1.26 96 101 -5.28 —=4.57 =—4.55 128 101
BaskethallDrill Text 1.16 1.97 1.53 97 99 2.30 2.36 2.88 94 99 —-2.22 -3.14 -3.44 105 104 -3.71 —4.05 -5.13 104 101
ArenaQfValor 0.97 1.29 0.97 98 99 1.71 2.17 2.43 95 103 —2.62 =3.19 —2.92 102 a7 -3.72 —4.66 —4.34 98 95
SlideEditing 0.04 —=0.03 -=0.01 99 99 —0.10 0.07 —=0.05 98 103 —0.59 —0.28 —0.30 109 102 0.07 —0.96 —0.84 108 100
SlideShow 0.19 0.27 0.38 98 99 —0.04 —=0.32 —=0.85 96 97 —0.43 —0.89 —0.92 108 102 —-1.01 -2.21 —1.49 108 104
Average F* 0.59 0.88 0.72 98 99 0.97 1.07 1.10 96 101 —-1.47 —=1.87 —=1.89 106 101 —-2.09 =297 —=2.95 104 100
Overall 0.70 1.09 1.18 97 99 1.55 1.72 1.63 a5 100 —1.54 =228 —2.44 130 101 —3.34 —=3.7T3 —3.84 132 99

* Not included in the overall average results based on [39].



Selection
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(a) GPM predicted CU example of the 31st picture of RaceHorsesC. (b) GPM predicted CU example of the 92nd picture of BQMall.




Geometric Partitioning

Object Segmentation-Assisted Inter Prediction for
Video Coding

Zhuoyuan Li'*, Zikun Yuan?*, Dong Liu', Senior Member, IEEE, Li Li', Member, IEEE, Xiaohu Tangz, Senior
Member, IEEE, and Feng Wu', Fellow, IEEE

A

(a) Rectangular partition (RP) (b) Line-based geometric partition (GP)  (c¢) Segmentation-based partition (SP)

Fig. 1. The partition results of different methods in the actual coding process, where (a) uses the rectangular partition (RP), (b) uses the RP + line-based
geometric partition (GP), (c) uses the RP + GP + segmentation-based partition (SP). The block is from the 71-th frame of the VVC ClassC BQMall sequence.
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Segmentation-based partition Method

O Traditional segmentation algorithm — Rough estimation

N

e

[0 Motion Compensation — Boundary artifacts

[0 Motion Vector Coding —  Extra bits consumption

O Motion Estimation —> Optimal motion vectors



Framework (Decoder):

Primary Reference Picture Primary Prediction
Primary I‘:.’Iot}on MV rimary
3 Data Derivation Ref >
(Section VI) primary
Refg}wm Prediction
Picrure :
L 4 \
Parsi SAIP Data Learned Segmentation Motion Compensation
arsing (Section IV) (Section V)
"~
Bitstream !
SECOIldal'y.I\'IQIIOII MViecondary
Data Derivation Ref >
(Section VI) secondary

-

Secondary Reference Picture  Secondary Prediction

We propose an object segmentation-assisted inter prediction (SAIP) method that does not
restrict the partitioning shape and further improves the prediction accuracy by utilizing
segmentation to assist the entire prediction process. To the best of our knowledge, we are the
first to introduce deep learning-based segmentation technologies to improve the
performance of inter prediction in traditional video coding. (Blackboard)



Learned Segmentation

Image Instance
Segmentation

v

Video Object
Segmentation

Reference Pictures
(1st to Nth Frame)

Binarize

Ist to Nth Mask

Image Instance Segmentation for the coding of high quality frame

Video Object Segmentation for the coding of other frame



Motion Compensation

Segmentation Map

Primary Prediction
M Vprimary
Fractional part

Primary dict;
Region Fractional MCP Prediction
N Overlapped —>| DCTIF > Overlapped
Region-based | Integer MCP Region-based
Motion ) Fractional MCP Motion _
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5 J MVsecondary
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Integer Motion Compensation Fractional Motion Compensation
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Motion Compensation

(distance-based adaptive weighted strategy)

—71.00

-0.75

0.50

0.25

0.00

Segmentation Line



Motion Vector Coding

Partition Derivation

Reference Picture Decoder Picture Buffer

Bitstream Parse syntax :
M Vprimary
: Secondary
Learned Translation
Segmentation ,.,f—\/ Primary
— ]

Multi-Reference Picture Segmentation Map Motion Area Partition



Motion Vector Coding

Primary & Secondary Motion Vector Coding

o

Current CU

Type(i) 1/5] 276 [3/7 48 9

10 11

14 15 16

Cand|0O] B2y BOJAO T A1 BO AO Bl

Cand[I] B1} B2 |B2

BO B2 T T B2

.
.
.

Cand[2] AI} T |T A0 A0

Bl Al BO

Cand[3] BO| B1 |[A1 BI

0 0 0 0 Al

! Neighbor CUs in Fig. 6.

2 Zero vector (0.,0).

Candidate list derivation for
secondary region

e
1,.
0

i =6 i=7 i=8

.
-
.

i =10 i=11 =12

i=13 i =14 =15 =16

All types of the distribution of
motion-inconsistent regions

(Blackboard)



Motion Estimation

1 Rough motion vector estimation:

2 Refined motion vector estimation:

With the primary and secondary candidates constructed, the
best combination of these candidates is determined by two
stages.

1) Stage 1: The combined primary and secondary candi-
dates are used to conduct the SAMC to generate the prediction
of the coding block. The sum of the absolute transformed
differences (SATD) of luma between the prediction and the
original signal is computed as SATD,, ; g. The rate-distortion
(RD) cost J, ;3 for a, j and (3 can be sorted by

Ja,j,ﬁ = SATDQ_.j,ﬁ -+ )‘L(Ra + Rj + Rj).. (11)

where R., R; and Rg denote the estimated rates for the
primary candidate index, judge index, and secondary candidate
index, respectively.

2) Stage 2: From stage 1, the best four combined candi-
dates further apply the residual transform coding and CABAC-
based rate estimation to obtain the accurate rate cost R, j 3.
The distortion over three components between these candidates
and the original signal is measured by the sum of squared
differences (SSD) as SSD,, ; g. Finally, the optimal «, j, and
3 can be selected by

Jojp=5SDa s+ ARz (12)



Performance

Class Sequence Low-delay P Low-delay B
Name Y U \Y Y U Vv
MarketPlace -0.38% 0.34% -0.89% -0.42% -0.61% -0.74%
RitualDance -0.18% -0.06% -0.43% -0.18% 0.09% 0.02%
ClassB Cactus -0.26% -0.36% -0.52% -0.26% -0.23% -0.12%
(1920x1080) BasketballDrive -0.27% -0.15% -0.36% -0.12% -0.65% -0.05%
BQTerrace 0.06% -0.56% 0.73% -0.11% 0.22% 0.30%
B Average -0.21% -0.16% -0.30% -0.22% -0.24% -0.12%
BasketballDrill -1.77% -1.07% -2.06% -0.99% -0.49% -1.13%
ClassC BOMall -1.97% -2.78% -2.41% -0.78% -1.31% -0.72%
PartyScene -0.20% -0.33% -0.35% -0.14% -0.28% -0.18%
(832x480)

RaceHorsesC -0.94% -1.26% -0.24% -0.18% 0.27% -0.29%
C Average -1.22% -1.36% -1.27% -0.52% -0.45% -0.58%
FourPeople -0.78% 0.01% -0.07% -0.32% 0.34% -0.33%
ClassE Johnny -1.79% -1.41% -1.76% -1.11% -1.99% 0.50%
(1280x720) KristenAndSara -0.53% -1.61% 0.32% -0.24% -1.10% 0.09%
E Average -1.04% -1.00% -0.50% -0.56 % -0.91% 0.09%
B, C, E Average -0.75% -0.77 % -0.67 % -0.41% -0.48% -0.22%
BasketballPass -0.54% -0.59% -0.81% -0.33% -1.01% -0.02%
ClassD BQSquare -0.74% -2.54% 2.67% -0.28% -2.06% 2.44%
(416x240) BlowingBubbles -0.94% -1.91% -1.82% -0.53% -0.57% 0.69%
RaceHorses -0.74% -0.27% -2.24% -0.01% 0.20% -0.89%
D Average -0.74% -1.33% -0.55% -0.29% -0.86% 0.56 %




Ablation

Motion Compensation

ABLATION STUDY ON SAMC BASED ON VTM-12.0

Low-delay P configuration

Motion Vector Coding

ABLATION STUDY ON SAMVC BASED OoN VTM-12.0

Low-delay P configuration

Class ONE-STEP TWO-STEP SAMC (TWO-STEP+ORMC)
Y U \Y Y U v Y u \Y
B -0.05% -034% 027% -004% -011% -0.06% 021%  -0.16% -0.30%
C -036% -094% -0.72% 097% -099% -0.94% -1.22%  -1.36% -1.27%
E 037% -037% -1.07% -0.54%  -050% -045% -1.04%  -1.00% -0.50%
Avg. -0.23%  0.55% -0.40% 041% 0.50% -0.45% 0.75%  -0.77% -0.67 %
D -0.55% -046%  -045% 0.70% -056% -1.17% 0.74%  -1.33% -0.55%
Low-delay B configuration
Class ONE-STEP TWO-STEP SAMC (TWO-STEP+ORMC)
Y U v Y U v Y U v
B 001% -0.09% 0.11% -0.06%  -0.18% 0.15% -022%  -0.24% -0.12%
C -0.12% -036% -0.10% -033%  -050%  -0.65% -052%  -0.45% -0.58%
E -024% -011%  -0.02% -0.27% 0.06% 0.02% -0.56%  -091% 0.09%
Avg. 0.10% -019% 0.01% 0.20% 0.23% -0.15% 041% -0.48% -0.22%
D -0.19% 0.06% 0.63% -040%  -0.16% 0.04% -0.29%  -0.86% -0.56%

Class wio SAMVC w/ SAMVC
Y U A Y U v
B -0.09%  -032% 0.20% 021% -0.16% -0.30%
C -095% -1.20% -1.13% -1.22%  -1.36% -1.27%
E 0.54% -0.88% -0.49% -1.04%  -1.00%  -0.50%
Ave. 0.49% -0.76% -0.58% 0.75% -0.77% -0.67%
D 0.63% -1.04% -0.22% 0.74% -1.33% -0.55%
Low-delay B configuration
Class w/o SAMVC w/ SAMVC
Y U A Y U v
B 0.07% 0.17% -0.16% 022% -024% -0.12%
C 0.20% -035% -0.33% 0.52% -045% -0.58%
E 021% -0.04% -0.17% 0.56% -091% 0.09%
Ave. 0.15% -0.20% -0.22% 0.41% -0.48% -0.22%
D -0.15% -0.13%  0.20% 0.29% -0.86% -0.56%




Selction & Time complexity

TIME COMPLEXITY

Low-delay P Low-delay B
Class

EncT DecT EncT DecT

B 424% 114% 409% 111%

C 398% 109% 370% 108%

D 398% 95% 356% 109%

E 454% 87% 400% 100%
Overall 419% 101% 384% 107%

*:the rule of learning-based coding paper

| R N
(b) GEO + SAIP (BQMall, QP : 37, POC: 68)



360-Degree coding

Motion-Plane-Adaptive Inter Prediction
in 360-Degree Video Coding

Andy Regensky, Christian Herglotz, Member, IEEE, and André Kaup, Fellow, IEEE
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(b) sphere mapping (front) (c) sphere mapping (back)
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(a) ERP-projected 360-degree image

(b) sphere mapping (front)

(c) sphere mapping (back)

In this paper, we propose a motion-plane-adaptive inter
prediction technique (MPA) for 360-degree video that
takes the spherical characteristics of 360-degree video
into account. Based on the known projection format of
the video, MPA allows to perform inter prediction on
different motion planes in 3D space instead of having to
work on the - in theory arbitrarily mapped - 2D image
representation directly. We furthermore derive a
motion-plane-adaptive motion vector prediction
technique (MPA-MVP) that allows to translate motion
information between different motion planes and
motion models.

£ 536089 4m A0 F7 7% [> 3DHImAL 7k



The key question of sphere video coding ' e L

e

(a) ERP-projected 360-degree image

Typically, a 2D representation of the 360-degree video is required to allow compression using existing video
coding techniques such as the H.264 /AVC, the H.265/HEVC or the H.266 /VV(, video coding standards. Fig(a)
shows an example of a 360-degree image mapped to the 2D image plane through an equirectangular projection
(ERP). While this is one of the most common 360-degree projection formats, there exist a plethora of other
formats including various variations of cubemap projections, segmented and rotated sphere projections, or
octa- and isocahedron projections to name only a few [5].

While the black lines of constant azimuthal (vertical) and polar (horizontal) angles form a block structure in the
ERP-projected image, this is not the case in the spherical domain. It is clearly visible that the different blocks
become increasingly distorted with a higher distance to the equator.



In this work, we propose a novel motion-plane-adaptive inter

prediction technique (MPA) for 360-degree video that

allows to perform inter prediction on different motion

planes in 3D space. Any motion on these planes is modeled

purely using horizontal and vertical shifts while the motion 1 G 88 sk 702D b 4T S /76 5 3D s &) T i
planes themselves can be oriented freely in 3D space. In this

way, MPA takes both the spherical characteristics of 360-

degree video and the translational nature of most camera G

and object motion into account. MPA thus is able to more . . .
accurately reproduce the resulting pixel shifts in the 2D $ 2 AHERETTIN, {5 A 3D Ao [ 5T
projection domain than classical translational techniques are

able to. Due to their narrow field of view, such 3D space G
considerations are not necessary for conventional
perspective video. To further improve the performance of 3 wn{ar 2Dy s e FM ZESD F EiF I Rk 18

MPA and make it compatible to existing inter prediction
techniques, we additionally derive an efficient method to
transfer motion information between different motion
planes and motion models.



1 An overview over related approaches to improving 360-degree video coding is given.

2 Briefly recapitulates the traditional inter prediction procedure,

3 Introduce the proposed MPA. Within this section, the projection functions required for motion-plane
adaptivity are introduced including a generalized formulation of the perspective projection, the motion-plane-

adaptive motion model is presented, an adapted motion vector prediction method is derived.

Related work:

Y. Wang, L. Li, D. Liu, F. Wu, and W. Gao, “A New Motion Model for Panoramic Video Coding,” in ICIP.,, Sep 2017,
pp- 1407-1411.

Y. Wang, D. Liu, S. Ma, F. Wu, and W. Gao, “Spherical Coordinates Transform-Based Motion Model for Panoramic
Video Coding,” IEEE JETCAS., vol. 9, no. 1, pp. 98-109, Mar 2019.

L. Li, Z. Li, M. Budagavi, and H. Li, “Projection Based Advanced Motion Model for Cubic Mapping for 360-Degree
Video,” in ICIP, Sep 2017, pp. 1427-1431.

L. Li, Z. Li, X. Ma, H. Yang, and H. Li, “Advanced Spherical MotionModel and Local Padding for 360° Video
Compression,” TIP, vol. 28, no. 5, pp. 2342-2356, May 2019.



Related work

Wang et al. propose a 3D translational motion model, where all pixels in a regarded block on the sphere are shifted in
3D space according to a 3D motion vector derived from the original 2D motion vector.
A similar approach is followed by Li et al. in [12],[13], where the 3D motion vector is derived based on the assumption

that two neighboring blocks adhere to the same motion in 3D space (local padding and frame padding).

Assumption: Motion in sphere is translation.

Y.F Wang s Method L.Li’s Method



Projection ERP

As MPA is based on the known mappings between the
2D 1mage plane and the 3D space representations of a 360-
degree video, a general formulation of these mappings in the
form of projection functions is required. Any valid projection

287 LI BU= NP UK =

between a 3D space coordinate s = (x,y,2)1 € S on the unit
sphere and the corresponding pixel coordinate p = (u,v)? €
R? on the 2D image plane, where S = {s € R? | ||s]|2 = 1}
describes the set of all coordinates on the unit sphere. The

function € : S — R? is invertible and describes the relation
» {EfaTEYsphere

inverse projection function £~ : R?> — S maps the 2D image
plane coordinate back to the unit sphere in 3D space.



Projection ERP

The equirectangular projection £ is a popular and widely ¥

applied example of a general 360-degree projection. It maps
the polar angle # € [0,7] to the vertical v-axis and the
azimuthal angle ¢ € [0,27] to the horizontal u-axis of the
2D image plane. For projecting a 3D space coordinate s on

the unit sphere to the 2D image plane, its spherical angles
(6, ¢) according to Fig. 2 need to be obtained first through

# = arccos(z), (4)
@ = arctan2(y, z), (5)

where arctan2 describes the four-quadrant arctangent. The
spherical angles are then projected to the 2D image plane
yielding the pixel coordinate pg,, = (Uerp, Verp)? € R? as

-U. (6)

u,erp —_—

Uerp — ; ) V, (7)

where U describes the width and V' the height of the 2D
image plane in pixels. Typically, U = 2V in case of the
equirectangular projection as the azimuthal angle ¢ has twice
the angular range compared to the polar angle #. The equirect-
angular projection function £, combines steps (4)-(7) in a
concise expression.



Projection ERP

For the inverse equirectangular projection 5;;, the pixel
coordinate on the 2D image plane is projected back to the
spherical domain through

p =72 om (8)
Ve
= ;’ 3 9)
before the final pixel coordinate on the unit sphere is obtained
as
x = sin(f) cos(yp), (10)
y = sin(6) sin(¢p), (11)

z = cos(f). (12)




Projection Generalized Perspective Projection

The orientation of the applied 3D coordinate sytem (z, y, 2)
1s visualized in black in Fig. 2. Thereby, y is oriented horizon-
tally, z 1s oriented vertically and x is oriented perpendicular
to y and z. The default camera is positioned at the origin and

oriented 1n negative x-direction. The rotated blue coordinate
system (z’, ¢, 2’) is an intermediate system for the generalized

perspective projection, which will be introduced later.

For MPA, two projection functions are important. First, the
employed 360-degree projection &, of the given video, and
second, thl? perspe?tive prnjec:[ion §, for representing motion
on the desired motion planes in 3D space.

ARBELIRRAER

Fig. 2. The employed 3D coordinate systems. The black coordinate system
(x,vy, z) describes the main system orientation where y is oriented horizon-
tally, z is oriented vertically, and x 1s oriented perpendicular to y and z.
The default camera is positioned at the origin and oriented in negative -
direction. # and ¢ denote the corresponding polar and angular angles in
spherical coordinates. The blue coordinate system (z’,y’,2’) describes an
intermediate system used for the perspective projection where the virtual
perspective camera is oriented in positive z’-direction. The corresponding
polar and angular angles " and ¢’ are given in blue.



Projection Generalized Perspective Projection

The inverse projection then entails the following steps. First,
the polar coordinates (rp, ") need to be calculated from the

pixel coordinate p,
ry = Nu%%—vg, (19)

!

@' = arctan2(vp, up). (20)
The corresponding incident angle is then obtained using

o arctan (r,/f) if byip = 0,

21
7 —arctan (rp/f) if byip = 1. @b

Finally, the pixel coordinate s in the spherical domain results

1mn
z = —cos(0) (22) Fig. 2. The employed 3D coordinate systems. The black coordinate system
o ) ’ (x,vy, z) describes the main system orientation where y is oriented horizon-
y = sin(0") cos(y’), (23) tally, z is oriented vertically, and = is oriented perpendicular to y and =z.

The default camera is positioned at the origin and oriented in negative -
direction. # and ¢ denote the corresponding polar and angular angles in
spherical coordinates. The blue coordinate system (z’,y’,2") describes an
i’gﬁj‘j— —t intermed_iate system_useq for tl}e perf?p_ective p:mjet_:tit}n where the virt_ual

I perspective camera is oriented in positive z’-direction. The corresponding
polar and angular angles #’ and ¢’ are given in blue.

z = —sin(#") sin(¢"). (24)



Motion model
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Based on the generalized perspective projection function &
and a given 360-degree projection function &, such as the
equirectangular projection function &, described in Sec-
tion IV-A, the motion-plane-adaptive motion model is derived
as follows.

Sr.m - il vam

In a first step, the original 360-degree pixel coordinate p,
(in, e.g., the ERP domain) is projected to the pixel coordinate
p, on the desired motion plane using

p, =&, (RE ' (p,)) (25)

where £ ! projects the original 360-degree pixel coordinate p,
to the unit sphere, the motion plane rotation matrix R € R3*3
rotates the pixel coordinate on the unit sphere according to the
desired motion plane orientation, and £ then projects the pixel
coordinate onto the motion plane.



Motion model
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In a second step, the translational motion according to the
motion vector ¢ is performed on the obtained motion plane
yielding the moved pixel coordinate on the motion plane

Ppm = Pp + L. (26)

In the final third step, the moved pixel coordinate p, , on
the motion plane is projected back to the original 360-degree
format to obtain the moved pixel coordinate in the 360-degree
projection

Pom =& (R, (Ppm)) - (27)
where R~! = RT.

Putting steps (25)-(27) together, the overall motion model
Mmpa 18 defined as

mmpﬂ(pm t: R) - ED (R_IEI;I (gp (Rél(}_l(pf.})) + t)) : (28)

A schematic representation of the described motion model is
shown in Fig. 4. The figure also visualizes block motion for
an exemplary block in an ERP-projected 360-degree image,
where it i1s clearly visible that the proposed motion model is
able to accurately replicate the distortions of the block in the
ERP domain resulting from a translational motion on the street
surface.



Motion Estimation
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Rotations by multiples of 90 degrees around one or more
axes can be formulated through simple transpositions of the 3D
space coordinates, such that a suitably defined set of motion
planes allows to considerably speed up the calculations for the
inherent coordinate rotations. We thus formulate a limited set
of three rotation matrices leading to the motion planes

o front/back: No rotation,

o left/right: 7/2 around z-axis,

o top/bottom: 7 /2 around y-axis.

A potential encoder can then select the best matching mo-
tion plane through rate-distortion optimization. Please note,

however, that in general, the motion-plane-adaptive motion
model is not limited to these motion planes and could employ
arbitrary motion plane rotation matrices R.




Motion Estimation

However, in the context of MPA. the motion information

at the different candidate positions could be represented on

motion planes differing from the investigated motion plane for Motion estimation in different planes
the currently regarded block. Hence, a method to efficiently

translate motion information, 1.e., motion vectors, between
different motion planes is required.



However, in the context of MPA, the motion information

at the different candidate positions could be represented on
motion planes differing from the investigated motion plane for
the currently regarded block. Hence, a method to efficiently

translate moftion i1nformation, 1.e., motion vectors, between
different motion planes is required.

According to Fig. 5, let’s assume a motion vector £; and

a motion plane rotation matrix J, are obtained at a source
candidate pixel coordinate p,. To transform the motion vector

to a different target motion plane described by the rotation

matrix R;, we need to find a motion vector ¢; on the target
motion plane that results in an identical pixel shift in the 360-
degree domain as the motion vector t; on the source motion
plane, i.e.,

B2 BO | Bl F---»
|
: psﬁ R’-"‘J t’*‘
R, '
- - -» MPA-MVP

Current ,

block t, :
A0
Al

mmpa (psa ts; Rs)[mmpa( tta R’t) (29)

The source pixel coordinate p is hereby used as an anchor for
the motion plane translation. By inserting (28) into (29), we
can solve for the required motion vector on the target motion
plane as

Fig. 5. Spatial motion vector predictor candidates in the H.266/VVC
video coding standard [24] with a schmematic illustration of MPA-MVP for
candidate position B1 at pixel coordinate p,. With R describing the motion
plane of the candidate position and R; describing the motion plane of the
current block, MPA-MVP translates the motion vector ts from Bl to the
corresponding motion vector predictor ¢; for the current block.

& (RRT'E (&, (RE (p) + 1))
_ﬁp (Rt£|:| (Ps))'




t= & (RRI'E (& (R (p,) +15))
- Ep (Rtgo_l(ps)) ’

Thereby, the first row explains, where the candidate pixel

B2

coordinate moved by i on the source motion plane lies
on the target motion plane, and the second row explains,
where the "unmoved” candidate pixel coordinate lies on the
target motion plane. Fig. 5 visualizes the general procedure of

AQ

BO | Bl F---»
|
|

P, Rt
R {

- - -» MPA-MVP

Current :
block t, !

Al

the described motion-plane-adaptive motion vector prediction
(MPA-MVP) for an exemplary candidate position B1.

Fig. 5. Spatial motion vector predictor candidates in the H.266/VVC
video coding standard [24] with a schmematic illustration of MPA-MVP for
candidate position B1 at pixel coordinate p,. With R describing the motion
plane of the candidate position and R describing the motion plane of the
current block, MPA-MVP translates the motion vector ts from Bl to the

corresponding motion vector predictor £; for the current block.




Furthermore, to integrate MPA as an additional tool along-
side the existing translational inter prediction procedure, MPA -
MVP does not only need to be able to translate motion vectors
between the different motion planes of MPA, but also between
MPA and [the classical translational motion model

!

Mmpa (PS, ts/t; Rs/t) — mt(psa tt/s)p (3 1)

where both the translational or the motion-plane-adaptive mo-
tion model could be the source motion model of the prediction

candidate (noted with the subscript s/t or vice versa, 1.e., if one
motion model is source, then the other motion model 1s target
and the other way around).

B2 BO|| Bl |-1--
|
: phq -R‘.\"l t!'i-
L
» MPA-MVP

Current .

block |
A0
Al

Not in adaptive plane



In case the motion-plane-adaptive motion model is the

source model, an equivalent motion vector &, for the classical
translational motion model can be derived based on the motion

vector £ on the source motion plane as

t=¢& (R7'€ (&, (R& ' (p) +t)) — b (32)

On the other hand, in case the classical translational motion
model 1s the source model, an equivalent motion vector &; for
the motion-plane-adaptive motion model can be derived based
on the source motion vector ¢, and the desired target motion
plane as

to=§, (R& ' (p+t)) — & (R& ' (p)).  (33)
The key differences between (32) and (33) are the domain in

B2 BO | Bl [---»
|
: p,.-‘u Rﬁl t!'i-
R, ¥
- - - » MPA-MVP

 Current | .

block 2 |
A0
Al

which the source motion vector is applied, and the domain in
which the target motion vector is calculated. In (32), the source
motion vector is applied on the source motion plane and the
target motion vector is calculated in the 360-degree domain,

whereas 1n (33), the source motion vector is applied in the
360-degree domain and the target motion vector is calculated
on the target motion plane.



Motion Compensation

. . I let C let . . Refi F
Bitstream —* Signaling ncogf &S Motion Derivation Ol:/ﬁ €€ o1 Motion Modeling o Zr;::;in;ame — Prediction
_ - | Extended I | Extended I ~_
- ! I = e
-7 ; ! Motion Field =~~~ _ _
- - "' I‘ S~ -
Motion Derivation Motion Modeling
Merge=1 M Candidat Affine=0
cric;lopirilorll ae x Translational
Extended
Incomplete Complete Motion
MI MI e Field
Motion-Plane-
Merge=0 MVP + MVD MPA=1 g Adaptive
Extended @

Fig. 6. Schematic representation of the decoder-side inter prediction pipeline in the H.266/VVC video coding standard including the proposed MPA tool.
Components that need to be extended or added with respect to the original H.266/VVC inter prediction pipeline are labeled explicitly. For details on the

performed extensions and additions, please see the text.

If a merge mode is signaled or the current CU is coded
using an affine motion model, no adaptions to the signaling

second bin denotes whether the front/back motion plane is
used, and, if this is not the case, a third bin denotes whether

procedure are required for MPA. If no merge mode 1s signaled
and the current CU is not coded using an affine motion model,
the integration of MPA requires additional information to be

the left/right or the top/bottom motion plane is used. Similar to
the existing motion information (MI) in the H.266/VVC video
coding standard, the described information is signaled using

signaled. The MPA-specific information

(MPA flag, motion the context-based binary arithmetic coder (CABAC) [27] with

plane index) is signaled right after the affine flag and starts dedicated context models. In case of bi-prediction, i.e., two
with a first bin encoding the MPA flag. If this is true, a predictions with different MI are averaged to form an overall




Motion Compensation

To reduce the computational complexity of the motion-
plane-adaptive motion modeling, the motion model is executed
on 4 x 4 subblocks similar to the realization of the newly
introduced 4-parameter and 6-parameter affine motion mod-
els [28], [29] as shown in Fig. 7. Hence, the resulting pixel

. e - i - e i i

il e i o e e e

= e TR TR TR TR TR T

shift needs to be calculated only once per 4 x 4 subblock and i o i i i i i
all pixels within a subblock share the same pixel shift. This e R R e e
oreatly speeds up the motion modeling procedure. S R A R e e e

The precise pixel position within each subblock, at which
the motion-plane-adaptive motion model is evaluated, can in
principle be chosen arbitrarily. While intuitively, one would
choose the center position of the subblock, our experiments Gk 4 4 subblock sartitonine i MPA. With .

. . ig. 7. Exemplary 4 x 4 subblock partitioning in . Without subbloc
Slﬁ]OWBd tl‘]E‘it better resu“?‘ are Obtame_d I.ISlll.g one of the a.c.tual partitioning, the resulting pixel shift has to be calculated for each pixel
pixel positions surrounding the floating point center position. | individually (all arrows). With subblock partitioning, the pixel shift resulting
“For further evaluations. we use the pixe] pDSitiDl’l in the second  from the motion-plane-adaptive motion model is only calculated for one pixel
’ ) ] position within each 4 x 4 subblock (blue arrows).
row and second column of each subblock as shown in blue in
Fig. 7.

B = i S iy i i e e




Fractional enhancement

Convolutional Neural Network-Based
Fractional-Pixel Motion Compensation
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The traditional methods of fractional-pixel MC usually
follow the approach of interpolation. They adopt different
kinds of filters to interpolate fractional-pixel values from
integer-pixel values in a reference picture. In earlier years,
bilinear interpolation was usually adopted. Later on, more
efficient filters have been studied, such as Wiener interpolation
filter [4] and discrete cosine transform based interpolation
filter (DCTIF) [5]. Such filters are often derived from the
signal processing theory with assuming the signal to be
interpolated 1s band-limited. Being computationally simple
though, such filters may not deal with different kinds of
content well enough as the content in natural videos 1s much

The interpolation methods work on the reference pictures with
l . : . fractional-nixel val

However, the goal of fractional-pixel MC is not to “enhance”
the reference pictures with fractional-pixel values, but to
“guess” the current to-be-coded picture from the reference

pictures. In other words, we need to predict the pixel values

more complex than ideal band-limited signal. Considering that
different regions of natural videos have very different charac-
teristics, content adaptive interpolation filter is also proposed

of the current picture, rather than to predict the so-called
fractional-pixel values of the reference picture, based on the
integer-pixel values of a reference picture. It 1s a prediction
between two pictures instead of (between the fractional and
integer pixels) within one picture.

in the literature [3], but has the drawback of transmitting the
overhead of filter coefficients.
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Fig. 2. Comparison between the traditional interpolation-based methods and
the proposed CNN-based method for fractional-pixel reference generation.
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Fig. 3. The proposed end-to-end training scheme driven by invertibility.
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Method 1: The Simple CNNMCR (CNN based Motion Compensation Refinement)

* Directly refine the inter-prediction without any other information
N

min £ = r_[‘_gn Z (){vi — f(K |@))2 Where X stands for the orig, Y stands for the reco
1=1

* To discover the capability of refining the motion compensation prediction of CNN

Method 2: The CNNMCR

* Further improve the prediction accuracy by exploiting spatial correlation

* The input of CNN expands from the current block to the red reg
* Lethe CNN to learn how to smooth the “seam”, thus refines the prediction signal

. )ﬁ Residual _ N
Predicted | The Input of the CNNMCR Y i | 2 ‘F4 T )';- &
cu
1

(Red Square Region )
Output(Luma)
The Input of the Simple CNNMCR

(Light Blue Square Region) Region TO COmpress

~

i

64 632 6152

Convl Conv2 Conv3 Convé4

Input(Luma)




Hight lights

* Description and performance comparison / analysis with related technologies

OBMC is to reduce the block artifact caused by block-level It can be observed that OBMC alone achieves nice coding
motion CUmpEnSﬂtiUn. To that Cﬂd, for the current block to gain than the HEVC ﬁHChDI’, ]eading to on average 3.2 BD-
be predicted, not only its own MV but also the MVs of its rate reduction. But the combination of OBMC and CNNMCR
neighboring blocks (if available and not identical to the own is much better than OBMC alone, gives out on average 5.2%
MV) are all used to derive prediction signal for the current BD-rate reduction than the HEVC anchor. Comparing the

block. Then, multiple prediction blocks based on multiple BD-rate reductions of CNNMCR alone (2.3%), OBMC alone
MVs are combined to generate the final prediction signal. (3.2%), and OBMC + CNNMCR (5.2%), it seems the coding

Although OBMC achieves noticeable compression gain, there gamn of our proposed CNNMCR scheme and the OBMC

are still several limitations. First, the combination of multiple ~ technique can be accumulated largely. Therefore, although our
prediction blocks is simple, usually achieved by fixed-weight =~ CNNMCR and OBMC are both intended to refine motion
averaging that cannot suit for different video content. Second, compensation, their benefits are different in video coding.

though the MVs of neighboring blocks are utilized, other
information of neighboring blocks is ignored.

Performance

* HEVC, lowdelay-P

* 1.8% for The Simple CNNMCR

* 2.3% for The CNNMCR

* 5.2% for The CNNMCR together with OBMC
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Deep Affine Motion Compensation Network for
Inter Prediction in VVC
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Traditional AMC compensates the current block merely by
a parameterized affine model, which has limited capability to
model complex motions. To solve this problem, a learning-
based model, DAMC-Net, 1s designed to compensate the
current block by explicitly estimating pixel-wise motion fields
rather than implicitly deriving the subblock-wise motion field.
Specifically, a spatial pixel-wise motion field is estimated to
refine the prediction block for alleviating the spatial blocking
artifacts, and a temporal pixel-wise motion field between
frames 1s estimated to compensate the current block for
alleviating temporal misalignment.

Fig. 2 shows the overall architecture of the proposed
DAMC-Net. As shown 1n the figure, the multi-domain in-
formation is fully leveraged in the proposed DAMC-Net. In

order to improve the prediction accuracy of AMC_the spatial

neighboring pixels of the current block as well as its prediction
of AMC are combined|as the first input (/¢ )[to explore spatial
correlations. Besides, to obtain as accurate as possible source




& Besides, to obtain as accurate as possible source
s pmns[—?‘ pixels in the temporal reference frame of the current block,

: he most similar block together with neighboring pixels in
the reference frame is constructed based on CPMVs and used
as the second input (/). More importantly, since the initial
motion field (/p;r) constructed by CPMVs contains motion
information, /s 1s utilized as the third input. Taking the
Ic, Inp, and IR as the inputs, the proposed DAMC-Net is
optimized with respect to jointly utilizing spatial neighboring
and temporal correlative information to improve the prediction
accuracy.

In the DMCP module, features Feo, Fyrp, and Fp are
first extracted from [I~, Iy;r., and [Ip respectively. Taking

AMC Predcition

Initial Motion Field

SEESNTIRG CES these features as inputs, the motion estimation unit (MEU)

1s designed to estimate motion fields. Based on estimated
motion fields, deformable convolution 1s used to compensate
- : Fc and Fg. Features of compensated output £ and FZ
BafcoRce Blocks 7} are concatenated with F¢ as well as Fr to construct the

: aggregated feature F,,. Finally, the output block, Op ansc
& 1s reconstructed from F 44, by an AFR module.




Due to the limitation of deriving the subblock-wised motion

field, the prediction of AMC suffers from misalignment at
pixel-level. In order to improve the granularity of AMC, the

Fe¢

DMCP module 1s designed to estimate pixel-wise motion fields
for compensating the current block.

eeeees o In DMCP, to extract deep features with abundant informa-
' ’ tion, features F, Fyp, and Fi are extracted from I, I Fp,
and /r by multi-scale convolution unit [25] respectively. Then

the MEU 1is designed to estimate accurate motion fields. As
shown 1in Fig. 2, F, Fyr, and Fr are first concatenated,
then separate convolution operations are followed to generate
offsets for each texture branch in MEU. It should be noticed

-

Fpg

that not only the texture information /¢ and I are exploited

in MEU, but also the initial motion field 7, are jointly

, utilized to estimate accurate motion fields. Compared to a
D‘-‘“"“‘;‘;Z?f;;i‘:;;ﬁ;E‘:““"‘““‘d network which learns motion fields from scratch, the DMCP-
~Net estimates accurate motion fields with coarse input, which

helps to reduce the network training difficulty and ensure the
quality of learned motion fields.



Performance

TABLE 1
BD-RATE RESULTS OF THE PROPOSED DAMC-NET FOR AFFINE INTER-MODE

al g ) Inter AMC Inter DAMC-Net :
ass cquence Y Ch Cr Y Ch Cr 2) Encoding Configurations: DAMC-Net is integrated into
MarketPlace 527% 37% 7 24% 5.36% 376% 6.74% VVC reference software VTM (version 6.2). Experiments are
RitnalDance L69% 113% 1L20% 1L89% 134% 131% performed under the JVET common test conditions (CTC)
Clase B Cactus -8.43% -6.06% -6.24% -8.88% -6.30% -6.27% [40]. Since
" BasketballDrive 245% | -2.11% | -2.18% | -2.68% | -236% | -201% DAMC-Net] LDP configuration and Classes B~E are tested.
BQTerrace 077% | 024% | 064% | -174% | -072% | -0.96% In the experiments, the testing QPs are set as {22, 27,32, 37},
Average Class B 372% | -266% | -3.50% | -4.11% | -290% | -3.46% and the widely employed BD-rate [41], [42] is used as the
RaceHorses 139% L04% 0% L63% 133% 0% objective metric to evaluate the coding performance. A CPU
BOMall 0.88% 0.38% 017% 120% 0.48% 003% + GPU cluster is used as the test environment, where VVC
Class C PartyScene -1.52% -1.21% -1.12% -2.37% -1.83% -1.73% coding is tested in CPU and the DAMC-Net is running in GPU.
BasketballDrill -1.04% -0.20% -0.46% -1.16% -0.23% -0.07% The CPU is Inter(R) Core(TM) i9-9900K CPU @ 3.60GHz,
Average Class C -1.21% -0.71% -0.61 % -1.59% -0.97% -0.52% and the GPU is NVIDIA GeForce GTX 1080Ti.
RaceHorses -1.79% -0.83% -0.40% -2.14% -1.03% -0.79%
BQSquare -3.43% -1.21% -2.66% -6.13% -2.95% -4.27%
Class D BlowingBubbles -1.88% -0.68% -1.66% -2.62% -1.18% -1.62% o R
BasketballPass -1.74% -1.77% 0.32% 2.81% -2.47% 0.86% To Op'[lml.ZC the proposed network, L loss is utilized as the
Average Class D -2.21% L12% | -1.10 % -3.43% -1.91% -1.46% loss function:
FourPeople -0.75% -0.22% 0.57% -1.27% -0.65% -0.66%
L=[(Ocr -0 ) 113 3)
Class E Johnny -2.76% -1.58% -1.72% -4.39% -2.61% -2.36% = GT DAMC) |2
A8Ss
KristenAndSara -3.18% -2.27% -2.50% -3.41% -2.31% -2.99% _ _ _ _
Average Class E 5 93% e | dea | 30 S 3 00% where O¢r is the corresponding block in the raw videos and
0 is the output of AFR.
Overall 2.44% | -154% | -182% | 311% | -197% | -195% DAMC P
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Frame extrapolation is to predict future frames from the past i 2% ri;lﬁ
(reference) frames, which has been studied intensively in the X — [ ] [ ]
computer vision research and has great potential in video Ly y f
coding. Recently, a number of studies have been devoted to &
the use of deep networks for frame extrapolation, which =

achieves certain success. However, due to the complex and
diverse motion patterns in natural video, it is still difficult to Bl

extrapolate frames with high fidelity directly from reference

frames. To address this problem, we introduce reference Corfonipio

frame alignment as a key technique for deep network-based
frame extrapolation. We propose to align the reference frames,
e.g. using block-based motion estimation and motion
compensation, and then to extrapolate from the aligned g%-gﬁ;m
frames by a trained deep network. Since the alignment, a

preprocessing step, effectively reduces the diversity of

network input, we observe that the network is easier to train P
and the extrapolated frames are of higher quality. 9
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In this paper, we propose a key idea to address the problem.
Our idea is to utilize block-based ME/MC to align the refer-
ence frames and then to extrapolate from the already aligned
frames by a trained deep network. By means of alignment,

we effectively reduce the diversity of network input as the

block-level translation between reference frames is effectively

removed, but there 1s still subtle motion between these frames,

which corresponds to high-order motion in the original frames.

The diversity reduction will ease the network training as the
network is expected to deal with the subtle motion only. As
we observed, this design indeed improves the network perfor-
mance. Actually, a lot of deep learning techniques have tried
to reduce the diversity before network input or within network,
for example many different normalization methods [6]-[9] and
residual learning [10], [11]. To the best of our knowledge,
we are the first to propose reference frame alignment as a
diversity reduction technique for deep network-based frame
extrapolation.

Extrapolation |
/> Model [ \

&‘l ‘ [) Add to

Encoder
&

Decoder

—» HEVC [ HEVC

Reference prediction
List

Decoded t-4 t-3 t-2 t-1 Generated

BIMEMEAFHISZ M, IMABESEmMSIER

SE I HE FETFEIME E BIENEE, 150
Sz nIFuN R X



Performance

Class Sequence LDP LDB
- Y (%) U(%) V%) | Y (%) U @%) V(%)
Kimono —6.4 —5.0 —24 —2.6 —2.7 —1.4
ParkScene —3.7 —23 —1.4 —2.4 —1.5 —0.7
Class B Cactus —7.6 —8.5 —54 —4.0 —5.5 —3.5
BasketballDrive —3.9 —2.3 —2.1 —1.3 —0.1 —0.3
BQTerrace —7.4 —3.1 —1.0 —2.0 0.6 1.2
BasketballDrill —3.6 —2.3 —1.9 —1.5 —0.6 —0.4
Class C BQMall —-5.2 —3.9 —4.2 —3.5 —3.1 —3.4
. PartyScene -3.0 -3.0 —2.3 —1.8 —1.9 —1.1
RaceHorses —1.9 —0.6 —0.9 —0.7 0.1 —0.0
BasketballPass —4.3 —1.5 —1.8 —2.6 —0.7 —0.8
BQSquare —-2.8 2.3 2.0 —1.5 3.5 3.0
Class D Blow?ngBubb]es —41 —42 =30 | =31 =37 —19
RaceHorses —1.9 —0.9 —0.8 —1.3 —0.1 —0.1
FourPeople —102  —93 —10.0 | —6.7 —7.1 —8.0
Class E Johnny —9.9 —10.1 —5.2 —4.4 —4.1 —1.9
KristenAndSara —8.6 —9.8 —7.2 —4.8 —6.0 —4.7
BasketballDrill Text —-2.9 —1.8 —1.1 —1.1 —0.7 0.3
Class F ChinaSpeed —0.7 —-1.9 —1.6 —0.2 —0.7 0.1
SlideEditing 0.1 0.2 0.3 —0.1 —0.1 —0.2
SlideShow —0.6 —1.2 —34 —0.2 0.1 0.9
Class B —5.8 —4.2 —2.5 —2.5 —1.8 —0.9
Class C —3.4 —2.5 —2.3 —1.9 —1.4 —1.2
Class Summary | Class D —3.3 —1.1 —0.9 —2.1 —0.3 —0.0
Class E —9.6 —9.7 —7.5 —5.3 —5.8 —4.9
Class F —1.0 —1.2 —1.5 —0.4 —0.4 0.3
Overall Classes B-E —5.3 —4.0 —3.0 —2.8 —2.1 —1.5
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Reference Generation

Spatial-Temporal Inter-Layer Reference Frame
Generation Network for Spatial SHVC

Shiwei Wang, Liquan Shen, Jingyue Liu

Input

/ Enhanced Layer (EL) Encode;--'"'\\
@ '{ Transform) ( Quantization) -( Entropy Encoder ).
( Motion Compensation ) -[ Inter ] .
t Qua.ntization

Intra
ecode -
\ In-Loop Filters Transform
Plctme Buffer
l Dovwnsampling I E i : l .................................................................
beemmmmmmmmmnmeeny, £ T T T TTTTTTETTTT
—————————————— ~ : ! Recanm'ucted EL frames Irlrer-Layer

upsampled BL Reference Frame

Frame

Reconstructed BL
Sframes

—

CJ

Proposed ST- [LR)

Reconstructed BL
Frame ]

—_————————

'
|
ere-
|
|
[
|
\

T R —— ﬂ_’_), /
"""""""" ) et -
* Base Layer (BL) Encoder ™
4 BL Decoded _
. In-Loop Filters
Picture Buffer
| T o= } £ |
{ ) i\,




In spatial SHVC, the video 1s encoded into multiple bit-
streams of different resolutions with the same quantization
parameters. As shown in Fig. 1(a), the original video is
downsampled to obtain low-resolution BL input, and the BL
reconstructed images in DPB are later interpolated so that the
resolution of the interpolated BL frames is same as the reso-
lution of the EL frame with high resolution. Thus, in addition
to the previously reconstructed frame, the upsampled BL can
also be used as the inter-layer reference frame reference range

for EL layer coding. By introducing interlayer reference, the
efficiency of EL coding will be much higher than that without

interlayer reference. After that, the SHVC encoder outputs

corresponding two-layer code streams, which are transmitted
according to the needs of the decoder. In the SHVC standard,
this interpolation tool is defined as an 8-tap filter with fixed
parameters, and each subpixel is estimated using 16 pixels in
the neighborhood.

Input

/_ Enhanced Layer (EL) Encode_r:--'“"\
f | Transform Quantization + Entropy Encoder \‘-.
[ o (omtm) (o) )

( Motion Compensation ) -[Inter]

\ ecoce In-Loop Filters Transform |/
\d %

Picture Buffer ~/
e~ T i —
Downsampling : : g
CD : S e e
______________ ~ '/ Reconstructed EL frames Inter-Layer \1
upsampied BL \I E |r Reference Frame I
Frame | - ll. o :
|
| '
| | Reconstructed BL I
(. Jrames
R tructed BL
. } L Proposed ST-ILR |
AS
—_——————————— @ N ~ A ®) /f
brnoseossssoeees | Ittt
L~ H . .y
! ys BL Decoded Base Layer (BL) Encoder N
. ( In-Loop Filters ) \
' Picture Buffer '
| { e } Fan ‘
\ s 7 .-
4""..
oS Tomstom )=




®

Framework

N[ +AUOD)
g ¥

Y +AU0))

Auo) axid-qng

I

Y A0

NjY+AU0))

NAY+AU0)

L npay+au0)

\
~
L%
. m
apduwesd ajduesd
XEujjog Xeunjos§
NRY+AE AUOD) NPYHAE AU
? T
P NPYY+AUOD) NY+AU0 D) NPY+AUOD) NPY+AUO D) NPY+AUO D)
A A

ELt-1




Performance

TABLE 1
OVERALL ABITRATE AND APSNR OF THE PROPOSED ST-ILR COMPARED WITH SPATIAL SHVC UNDER RA CONFIGURATION

ABitrate(%) / APSNR (dB) BD-BR(%) BD-PSNR(dB)

Classes Sequences ATene
BLQP=22 BLQP=26 BLQP=30 BLQP=234

BLQP=22 BLQP=26 BLQP=30 BLQP-=34

BL + EL Only EL. BL + EL Only EL

A Traffic 2.38  -9.008/-0.009 -13.650/-0.004 -15.441/0.013 -15.307/0.070 -10.401 -14.270  0.314 0.371
PeopleOnStreet 1.82 -27.513/-0.116 -35.171/-0.176 -39.360/-0.181 -39.891/-0.183 -23.060 -33.513 1.138 1.583
BasketballDrive 1.95 -1.762/-0.008 -5.303/-0.0170 -6.787/-0.013 -6.984/-0.011 -3.578 -3.079 0.100 0.100

BQTerrace 1.81  -1.962/0.006 -2.679/0.013 -2.812/0.023  -3.176/0.036  -2.778 -4.168 0.042 0.045

’ Cactus 1.94  -4.058/0.012  -6.630/0.028  -7.245/0.056  -8.100/0.081 -5424  -8.852 0.141 0.160

Kimono 1.89  -1.928/-0.008 -4.300/0.0003 -4.353/0.005 -3.109/0.017  -2.487 -3.962 0.080 0.108

ParkScene 2.07 -1.938/-0.008 -3.694/-0.011 -4.015/-0.001 -4.014/0.018 -2.566 -3.503 0.079 0.096

Overall All 1.98 -6.881/-0.019 -10.204/-0.024 -11.430/-0.014 -11.512/0.004 -7.185 -10.478 0.270 0.352




Multi-hypothesis Prediction

MULTI-HYPOTHESIS PREDICTION BASED ON IMPLICIT MOTION
VECTOR DERIVATION FOR VIDEO CODING
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» More hypothesis (reference) leads to better prediction accuracy, along with more header bits
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Energy-Aware Quality Optimization

(Green Coding)

OPTIMIZED DECODING-ENERGY-AWARE ENCODING IN PRACTICAL VVC

IMPLEMENTATIONS
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The optimization of the energy demand is crucial for modern
video codecs. Previous studies show that the energy demand of VVC
decoders can be improved by more than 50% if specific coding tools
are disabled in the encoder. However, those approaches increase the
bit rate by over 20% if the concept is applied to practical encoder
implementations such as VVenC. Therefore, in this work, we inves-
tigate VVenC and study possibilities to reduce the additional bit rate,
while still achieving low-energy decoding at reasonable encoding
times. We show that encoding using our proposed coding tool pro-

files, the decoding energy efficiency is improved by over 25% with
a bit rate increase of less than 5% with respect to standard encod-

ing. Furthermore, we propose a second coding tool profile targeting

maximum energy savings, which achieves 34% of energy savings at
bitrate increases below 15%.




In the following, we will describe the basic concept to
achieve increased energy efficiency with a design space explo-
ration (DSE) [29]. In [29], the encoder’s complexity of the

HEVC mode decision process is optimized by parallelization

and skip decisions. In contrast to [29], we will focus on coding
tools and the energy demand reduction of the decoder. Based
on the findings in [5], we disable and enable coding tools of
VVC in the encoder and thereby, reduce the decoding energy
demand.

We define the design space by the tradeoff between energy
and compression efficiency. To achieve a higher energy effi-
ciency for VVC, we introduce the coding tool profile u, which

is defined by
/ u(l) \

u=| up |, (1)

\ u(N) )

where u(7) indicates the usage of a coding tool, 5 corresponds
to the index of a specific coding tool, and N to the number
of coding tools from Table I. Each entry represents a binary
value u(n) € {0, 1} indicating whether the tool is disabled or
enabled. For the initialization of u, we consider 28 coding
tools according to Table I. For each coding tool # that is

Intra
| Cross-component linear model (CCLM) v v v
2 Intra sub-partition (ISP) v v v
3 Matrix-based intra-picture prediction (MIP) v X v
4 Multiple reference line (MRL) v v v

Inter
5 Affine motion (AFFINE) - v v
6 Adaptive MV resolution (AMVR) - v v
7 Biprediction with CU-level weights (BCW) - v v
3 Bidirectional optical flow (BDOF) - - v
9  Combined inter-/intra-picture prediction (CIIP) - v v
10 Decoder-side MV refinement (DMVR) - - v
11 Geometric partitioning mode (GPM) - v v
12 Merge with MVD (MMVD) - v v
13 Prediction refinement with optical flow (PROF) - v v
14 Subblock-based temporal MVP (SBTMVP) - v v
15  Symmetric MVD (SMVD) - - v

Transformation and Quantization
16 Dependent quantization (DQ) v v v
17 Joint coding of chroma residual (JCCR) v v v
18  Low-frequency non-separable transform (LFNST) | v/ X v
19  Multiple transform selection (MTS) v v v
20  Subblock transform (SBT) - v v
In-Loop Filter

21 Adaptive loop filter (ALF) v v v
22 Cross-component adaptive loop filter (CCALF) v v v
23 Deblocking filter (DBF) v v v
24 Luma mapping with chroma scaling (LMCS) v v v
25  Sample adaptive offset (SAO) v v v

Others
26  Block-level differential PCM (BDPCM) X X X
27  Intra-picture block copy (IBC) X X X
28  Chroma separate tree (CST) v v v

marked with (v'), u(sn) 1s 1. Otherwise, for a tools that 1s
marked with (X), u(n) is 0, and the remaining tools marked
with (=) are not considered.




To evaluate the influence of a changed coding tool profile
on energy and compression efﬁciency, we use the Bj;zmtegaard—

Delta (BD) metric. With a BD-metric, we compare the effi-
ciency of an arbitrary video codec to another codec. Each BD
metric that we use 1n this paper 1s based on the Bjgntegaard-
Delta bit rate (BDR-PSNR) [30], which describes the bit rate

savings in % for the same Ub_iective quality measured in PSNR.

To evaluate the energy efficiency of a decoder, we substitute
the bit rate by the decoder’s energy demand. We call the result-
ing BD metric Bjgntegaard-Delta decoding energy (BDDE-
PSNR), which describes the energy savings in % for the same
PSNR. The measurement of the decoding energy and of PSNR
will be explained in detail in Section IV.
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