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Abstract— The past few years have witnessed a great success in
applying deep learning to enhance the perceptual quality of com-
pressed video. These methods usually perform frame-by-frame
quality enhancement, incurring high computational complexity.
Low-complexity perceptual quality enhancement is addressed in
this paper, motivated by the observation of temporal correlations
among video frames. We propose to decompose video content into
temporal low-frequency and high-frequency components, and to
focus the enhancement of the temporal low-frequency component,
which may significantly reduce the computational complexity.
Specifically, we employ the temporal wavelet transform (TWT)
for the temporal frequency analysis, and build a TWT-based
multiple-input multiple-output perceptual quality enhancement
scheme. First, we use a motion estimation method on the input
video to acquire the motion information, and then use TWT
to obtain the temporal low- and high-frequency components.
Second, we design a deep network to enhance the quality of the
temporal low-frequency component. Finally, the temporal high-
frequency component and the enhanced temporal low-frequency
component are combined by the temporal wavelet inverse trans-
form (TWIT) to generate the enhanced video. Experimental
results show that our method achieves comparable perceptual
quality to that of the state-of-the-art methods, but reduces the
computational complexity to 1/13.

Index Terms— Deep learning, low complexity, perceptual qual-
ity enhancement, temporal wavelet transform, video compression.

I. INTRODUCTION

NOWADAYS, with the dramatic growth of data traffic over
the internet and the emergent application of versatile

video formats such as 2K, 4K, high dynamic range, and
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wide color gamut, there is a pressing demand for storage and
transmission. To address this challenge, in recent decades,
lossy compression is employed to significantly reduce the
amount of data. However, lossy compression inevitably causes
compression artifacts (such as blurring and ringing effects)
and significantly compromises the quality of experience (QoE)
for viewers. To solve this problem, quality enhancement on
compressed videos has been widely studied in recent years to
mitigate the compression artifacts and improve the QoE.

In recent years, with the rapid evolution of deep neural net-
works (DNN), many DNN-based methods have been proposed
to enhance the visual quality of compressed images/videos.
References [1], [2], [3], and [4] focus on the objective
quality enhancement for compressed images/videos. However,
it is found that improving the objective quality may not
correlate with the enhancement of perceptual quality in real
application [5]. To improve the QoE, many methods have
been tentatively proposed to optimize the perceptual quality.
Galteri et al. [6], [7] design a generative adversarial net-
work (GAN) for image compression artifact reduction, which
realistically recovers high-frequency details. CVRGAN [8]
firstly introduces the GAN loss in network training strat-
egy to enhance the perceptual quality of compressed videos.
MW-GAN [9] proves that spatial high-frequency has a great
influence on the perceptual quality, so the wavelet packet is
employed to decompose the spatial high- and low-frequency
content in frames. Based on MW-GAN, MW-GAN+ [10]
further introduces an advanced motion alignment network and
a 3D discriminator to improve the perceptual quality.

Those DNN-based perceptual-oriented quality enhancement
methods can be classified into two categories according to
the input and output of the enhancement process. The first
category is single-frame quality enhancement [6], [7], [8],
which is single-frame input and output. The second category
is multi-frame assisted quality enhancement [9], [10], which
is multi-frame input and single-frame output. Compared with
the first category, the second category uses the temporal
correlation between frames to improve performance. However,
both of these two categories are all frame-by-frame quality
enhancement processes, which bring high computational com-
plexity due to the DNN employed to enhance each frame.
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Fig. 1. Visualization of compressed videos, original videos, and replaced videos on the test sequences of JCT-VC [11]. The replaced videos are obtained by
replacing the low-frequency frames of compressed videos with those of original videos.

In this paper, we focus on enhancing the perceptual quality
of compressed videos with lower complexity. Considering the
high temporal correlation between video frames, the tempo-
ral low- and high-frequency content indicates the main and
variational content of video frames, respectively. Due to the
low-frequency content representing the core information of
frames, we propose to exclusively enhance the low-frequency
content to improve the perceptual quality of frames, which can
significantly reduce computational complexity. Fig. 1 shows
compressed videos, original videos, and replaced videos which
are generated by replacing the compressed low-frequency
content with the original low-frequency content. It can be
found that the quality of replaced videos is obviously better
than that of compressed videos, which represents the signifi-
cant influence of low-frequency content on perceptual quality.
Meanwhile, since only the temporal low-frequency content
needs to be enhanced, the amount of computational complexity
can be greatly reduced.

Specifically, we propose a temporal frequency-based low-
complexity perceptual quality enhancement method. In our
method, the temporal wavelet transform (TWT) and temporal
wavelet inverse transform (TWIT) are utilized to implement
the temporal frequency analysis (TFA) and temporal fre-
quency synthesis (TFS), which are employed to transform
the video into temporal frequency frames and transform the
temporal frequency frames back into the video, respectively.
Different from the spatial wavelet transform which per-
forms wavelet transform directly on the spatial domain, the
TWT performs wavelet transform on the temporal domain
along the propagation of motion field. Our method composes
of three steps. First, a group of compressed frames is fed
into the hand-crafted motion estimation (ME) module to
acquire the motion field between frames, and then the TWT
is employed along the propagation of the motion field to
extract temporal high- and low-frequency frames. Second, the
temporal low-frequency frames are enhanced by a DNN-based

perceptual-oriented quality enhancement network. Finally,
TWIT is performed on the temporal high-frequency frames
and the enhanced temporal low-frequency frames to generate
a group of enhanced compressed frames. Note that one-level
TWT transforms two frames into one high-frequency frame
and one low-frequency frame. The TWT can further exe-
cute multi-scale pyramid decomposition, i.e. n-level TWT
is performed on temporal low-frequency frames generated
by (n − 1)-level TWT. Since n-level TWT transforms 2n

compressed frames into one low-frequency frame and 2n
− 1

high-frequency frames, our method exclusively enhancing
temporal low-frequency frames significantly reduces the com-
putational cost.

In summary, the main contributions of this paper are as
follows:

• With the above analysis, we propose to improve per-
ceptual quality by exclusively enhancing low-frequency
content, which can exploit the limited computational
resource more efficiently. This is the first attempt on
addressing the problem of perceptual quality enhance-
ment under computational complexity constraint from the
perspective of temporal frequency.

• To achieve this, we propose to implement the TFA
and TFS via TWT and TWIT with a hand-crafted
ME module. Furthermore, we design a TWT-based
low-complexity compressed video perceptual quality
enhancement method that can enhance multiple frames
simultaneously.

• We conduct extensive experiments to verify the effective-
ness of the proposed method. Experimental results show
that our method achieves comparable quality enhance-
ment with 13× computational complexity reduction.

The remainder of this paper is organized as follows.
Section II gives a brief review of related work. In Section III,
we present the temporal wavelet-based method in detail.
Section IV analyzes the effect of TFA. In Section V, we show
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the performance of our method. In Section VI, we show the
additional analysis of ablation studies. Section VII concludes
this paper.

II. RELATED WORK

In this section, we review the previous work that relates to
our research in two aspects. First, we introduce some methods
about the quality enhancement for compressed images/videos.
Second, we introduce some studies of wavelet transform-based
video compression.

A. Compressed Images/Videos Quality Enhancement

The quantization module is commonly employed with the
aim of increasing the compression ratio of images/videos.
However, quantization leads to information loss, resulting
in the poor quality of compressed images/videos. Therefore,
in order to counteract this negative effect, numerous enhance-
ment methods have been proposed to improve the objective
and perceptual quality of compressed videos.

First of all, studies focusing on enhancing the objec-
tive quality of compressed images/videos are introduced.
Dong et al. proposed a four-layer artifact reduction con-
volutional neural network (AR-CNN) [12] to reduce the
compression artifacts in JPEG images. Later, a resource-
efficient blind quality enhancement (RBQE) method [13]
based on a dynamic CNN architecture was proposed to achieve
blind quality enhancement. Moreover, He et al. proposed a
deep dual-domain semi-blind network that combined compres-
sion quality factor detection and compressed image quality
enhancement [14]. For compressed video objective quality
enhancement, Dai et al. [1], [15] proposed a variable-filter-
size residue-learning CNN-based post-processing approach to
replace the traditional loop filter tools (Deblocking [16] and
SAO [17]) in HEVC [18], resulting in the higher bit-rate
reduction. In [19], a deep CNN-based auto decoder (DCAD)
was proposed to reduce the distortion of HEVC compressed
videos. Yang et al. [2] proposed DS-CNN-I and DS-CNN-B
to reduce the intra and inter coding artifacts, respectively.
In addition, considering the similarity between consecutive
frames, multi-frame quality enhancement (MFQE) [3], [4] was
proposed to leverage adjacent frames to assist the enhance-
ment of the current frame and greatly improved objective
quality result. Furthermore, Deng et al. introduced a spa-
tiotemporal deformable convolution (STDC) [20] to further
aggregate temporal information. These studies on objective
quality enhancement aim to minimize pixel-wise loss, such
as mean squared error (MSE) and structural similarity index
measure (SSIM). However, higher objective quality does not
necessarily leads to higher perceptual quality, which has been
proved in [5].

To improve the visual experience, various studies have
focused on enhancing the perceptual quality of compressed
images/videos. Galteri et al. [6] presented a fully convolu-
tional residual network trained using a generative adversarial
framework for image compression artifact reduction. In [7],
taking multiple quality factors into account, Galteri et al.
proposed an ensemble of GAN driven by a quality predictor,

which realistically recovers high-frequency details. For percep-
tual quality enhancement of compressed videos, CVRGAN [8]
firstly introduces GAN loss in network training strategy to
enhance the perceptual quality of compressed videos. In [9],
Wang et al. demonstrated that spatial high-frequency infor-
mation had a major impact on the perceptual quality, which
performed the wavelet analysis on the spatial domain by DWT
(discrete wavelet transform). And they proposed to perform
spatial frequency decomposition via wavelet packet to extract
the spatial high- and low-frequency content in a frame, and
then adopted a reconstruction network with wavelet-dense
residual blocks to recover the high-frequency details. Based
on MW-GAN, MW-GAN+ [10] introduced an advanced
motion alignment network and a 3D discriminator, which
achieved a better perceptual enhancement effect. Although
these perceptual quality enhancement methods significantly
improve the perceptual quality, they can only enhance
videos frame-by-frame, which leads to heavy computational
complexity.

In addition, different from the previous methods, we adopt
temporal wavelet transform in our framework. For the dif-
ference of these two transforms (TWT and DWT), DWT
is a transform applicable to any discrete sequence. For its
application, DWT was usually performed spatially, treating
either one row or one column of pixels as a sequence. For
example, DWT may decompose a row of pixels into low-
and high-frequency components. Therefore, image processing
usually adopts 2D DWT, i.e., two DWTs working horizontally
and vertically respectively. All these transforms are spatial
DWTs. In this paper, we used DWT in the temporal dimension,
treating the pixels along a motion thread as a sequence. Thus,
it is known as TWT. Such TWTs have been studied for video
processing and compression in [21], and [22], for example.

B. Wavelet Transform for Video Compression

Wavelet transform is a powerful signal processing tool,
which has been extensively applied in numerous fields.
In video coding, due to its frequency decomposition character-
istics and ability to avoid block artifacts, various wavelet-based
video coding methods have been proposed and intensively
studied. Hsiang et al. proposed a wavelet-based motion
compensated embedded zero block scalable video coder
(MC-EZBC) in [23], which was designed based on the embed-
ded image coding scheme EZBC and utilized an invertible
motion-compensated 3-D wavelet subband filter bank for video
analysis/synthesis. Based on MC-EZBC, Wu et al. proposed
the well-known enhanced motion-compensated embedded zero
block coding (ENH-MC-EZBC) [24], which significantly
outperformed MC-EZBC. In [25], Chen et al. proposed a
content adaptive Lagrange multiplier selection algorithm for
the wavelet-based video coding, which enabled the more satis-
factory video quality with negligible additional computational
complexity. Inspired by [26], and [27], Dong et al. [22] pro-
posed a learnable wavelet inverse transform for scalable video
coding, significantly improving compression performance.

In addition to the wavelet-based video coding of the
MC-EZBC series, various other wavelet-based video coding
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Fig. 2. The one-level temporal wavelet-based low-complexity perceptual quality enhancement framework from the perspectives of inference and training.
The TFA indicates temporal frequency analysis, it includes two modules: motion estimation (ME) and temporal wavelet transform (TWT), where the ME
module is used to extract the motion vector (MV) between video or low/high-frequency frames, and the TWT module is used to generate the temporal high-
and low-frequency frames by performing the wavelet transform on video frames along the propagation of MV. During inference (green box), the compressed
video is fed into the TFA to generate temporal high- and low-frequency frames, and low-frequency frames are enhanced by the enhancement network. Then
the enhanced temporal low-frequency frames and high-frequency frames are fed into the temporal wavelet inverse transform (TWIT) to generate the enhanced
videos by performing the inverse wavelet transform along the propagation of MV. During training (blue box), TWT is performed on the original video along
the MV (extracted from the compressed video) to generate the training labels. The original and compressed low-frequency frames form a training pair to train
the network in an adversarial manner.

methods have been proposed. In [28], Onthriar et al. pro-
posed a wavelet-based Dirac video codec which employed
the motion compensation and 2-D wavelet transform. Based
on Dirac video codec, Dam et al. investigated a nonlinear
quantization method [29], resulting in significant improve-
ments in compression performance. In [30], Bystrov et al.
implemented a multichannel wavelet video codec based on
the Schrodinger codec, which was an optimized version of
the Dirac video codec. Owing to the more compact represen-
tation of the signal energy along the frequency subbands, the
multichannel wavelet significantly improved the compression
performance. In [31], Jin et al. utilized the DWT to obtain the
hierarchy of multi-frequency components at different spatial
resolutions, and further efficiently extracted the structural
and detailed information in temporal context to boost the
motion vector and residue compression. In [32], Meyer et al.
proposed an end-to-end trainable wavelet video coder based
on motion-compensated temporal filtering (MCTF), which
considered multiple temporal decomposition levels in MCTF
during training and adapted to different motion strengths
during inference.

The aforementioned studies predominantly utilize wavelet
transform as the transform module for video coding. For qual-
ity enhancement of compressed videos, Wang et al. [9], [10]
proposed to employ the spatial wavelet packet to decompose a
frame into high- and low-frequency content, and then recover
the high-frequency details to enhance the perceptual quality.
These methods verify the potential of the frequency-based
thinking in quality enhancement. However, no studies further
investigated the quality enhancement of compressed videos
in the temporal frequency-domain, and further excavate the
frequency analysis properties of the temporal-domain.

III. PROPOSED METHOD

In this section, we introduce the proposed temporal wavelet-
based low-complexity perceptual quality enhancement method.
The overview of the method is presented first, and then the
details of the method are introduced.

A. Overview

Fig. 2 shows the one-level TWT-based perceptual-oriented
quality enhancement method from the perspectives of both
inference and training.

During inference (illustrated by green box in Fig 2 ),
it mainly includes three steps. First, the compressed video
is fed into the TFA module to perform temporal analysis.
Specifically, the ME is employed to estimate the motion vec-
tor (MV) of the compressed video, and then the TWT module
is utilized to extract temporal high-frequency frames H and
temporal low-frequency frames L by performing the wavelet
transform on compressed videos along the propagation of MV.
Second, the temporal low-frequency frames L are enhanced by
using the perceptual-oriented quality enhancement network.
Third, the temporal high-frequency frames H , the enhanced
temporal low-frequency frames L , and the MV are fed into
the TWIT to perform the TFS. By the TWIT, the temporal
wavelet frames are converted to the enhanced video. Note that
only one-level TFA is shown in Fig. 2, the multi-level pyramid
TFA can be performed in the actual process, i.e. the next
level TFA performs ME and TWT on temporal low-frequency
frames generated by the current level TFA.

During training (illustrated by blue box in Fig 2 ), in order
to get the training labels of the enhancement network, TWT
is performed on the original video along the propagation
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Fig. 3. The pipeline of 2-level temporal forward Haar wavelet transform. LMV represents the MV between video/low-frequency frames, while HMV
represents the MV between high-frequency frames and video/low-frequency frames. The branches of LMV and HMV represent motion compensation along
the MV of LMV and HMV, respectively.

of MV from the compressed video to obtain the original
low-frequency frames. The original low-frequency frames and
compressed low-frequency frames form a training pair to train
the enhancement network in an adversarial manner.

As shown in Fig. 2, our framework mainly comprises three
modules: TWT, ME, and the enhancement network. The TWT
module is employed for frequency analysis by performing the
wavelet transform along the propagation of MV. It will be
introduced in Section III-B. The MV is generated through
the hand-crafted ME module which will be introduced in
Section III-C. The enhancement network is utilized to enhance
the low-frequency frames, the details regarding the network
structure, training strategy, and other relevant information will
be introduced in Section III-D.

B. Temporal Wavelet Transform

In this subsection, we introduce the TWT and TWIT mod-
ules. There are three types of TWT: temporal forward Haar
wavelet, temporal backward Haar wavelet, and temporal CDF
5/3 wavelet. Among these types, a suitable one is selected
as required. First, we introduce a detailed account of the
TWT using the temporal forward Haar wavelet as an example.
Second, we introduce the remaining two TWTs, which are
similar to the temporal forward Haar wavelet. In addition,
we present how to select the type of TWT. Finally, the TWIT
is introduced.

1) Temporal Forward Haar Wavelet Transform: The tempo-
ral forward Haar wavelet transform is designed based on the
lifting wavelet. Compared with the first generation wavelet,
the lifting wavelet offers a faster and in-place implementation.
Fig. 3 shows the 2-level lifting wavelet-based temporal forward
Haar wavelet transform. The transform comprises three fun-
damental stages: split, prediction, and update. For split, since
the wavelet transform is performed in the temporal dimension,
the split divides frames into update frames {F1, F3, F5, F7}
and prediction frames {F2, F4, F6, F8} according to the parity
of time. For prediction and update, different from the spatial
wavelet transform that directly filters on images, the TWT
needs to consider the propagation of motion field between

different video frames. Therefore, for the prediction of TWT,
pixels of the prediction frame are employed to subtract pixels
offset by MV within the update frame. Similarly, for the
update, the pixels of the update frame are employed to subtract
the pixels offset by MV within the high-frequency frame. The
specific formulas of prediction and update are as follows:

H2t
[m, n] = F2t

[m, n] − F2t−1
[m − L MV 2t−1

x [m, n], n

− L MV 2t−1
y [m, n]]

L2t−1
[m, n] = F2t−1

[m, n]+
1
2

×H2t
[m−H MV 2t

x [m, n], n

− H MV 2t
y [m, n]] (1)

where F2t and F2t−1 represent the frame at time 2t and 2t−1,
respectively. H2t represents the high-frequency frame obtained
by prediction, and L2t−1 represents the low-frequency frame
obtained by update. m and n represent the vertical and
horizontal coordinates of pixels. L MV 2t−1 represents the
MV between the current frame and the frame F2t−1,
and H MV 2t represents the MV between the current frame
and the high-frequency frame H2t , which will be introduced in
Section III-C. In order to obtain multi-level pyramid frequency
analysis, multi-level TWT is employed, which performs TWT
on the previous low-frequency frames. For example, Fig. 3
shows the second-level TWT which performs on the temporal
low-frequency frames {L1, L3, L5, L7}.

2) Other Types of TWT and the Selection of Different TWTs:
To reduce computational complexity, our method exclusively
enhances temporal low-frequency frames. It is expected that
information be concentrated in low-frequency frames as much
as possible, leaving less high-frequency information in high-
frequency frames, so the quality of all video frames can be
better enhanced. In this subsection, to concentrate more infor-
mation in low-frequency frames, we additionally employ the
temporal backward Harr wavelet transform and the temporal
CDF 5/3 wavelet transform. They are similar to the temporal
forward Haar wavelet transform, which are also designed
based on the lifting wavelet and require three steps of split,
prediction, and update. The differences among the three TWTs
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are inputs and formulas for prediction and update, which will
be introduced in detail below. Then we describe how to select
the type of TWT.

The temporal forward Haar wavelet employs 2t and 2t − 1
frames for prediction and update, as shown in Eq. 1. How-
ever, some content in the current frame may be occluded
in the previous frame, but not occluded in the following
frame. Therefore, the temporal backward Haar wavelet which
employs 2t and 2t + 1 frames is proposed. Its formulas for
prediction and update are:

H2t
[m, n] = F2t

[m, n] − F2t+1
[m − L MV 2t+1

x [m, n], n

− L MV 2t+1
y [m, n]] (2)

L2t+1
[m, n] = F2t+1

[m, n]+
1
2

×H2t
[m − H MV 2t

x [m, n], n

− H MV 2t
y [m, n]] (3)

Bi-directional prediction is an important inter-frame predic-
tion technique in video coding. Compared with unidirectional
prediction which exclusively utilizes the previous or the
following frame, bidirectional prediction utilizes both the
previous and the following frames, so bidirectional prediction
can significantly improve the prediction accuracy and reduce
the residual. Based on the idea of bidirectional prediction,
we introduce the temporal CDF 5/3 wavelet to reduce the
information in high-frequency frames. The temporal CDF 5/3
wavelet employs both the previous frame and the following
frame. The formulas for prediction and update are as follows:

H2t
[m, n] = F2t

[m, n]−
1
2

×F2t−1
[m − L MV 2t−1

x [m, n], n

− L MV 2t−1
y [m, n]]

−
1
2

× F2t+1
[m − L MV 2t+1

x [m, n], n

− L MV 2t+1
y [m, n]]

L2t−1
[m, n] = F2t−1

[m, n] +
1
4

× H2t
[m − H MV 2t

x [m, n], n

− H MV 2t
y [m, n]]

+
1
4

× H2t−2
[m − H MV 2t−2

x [m, n], n

− H MV 2t−2
y [m, n]] (4)

There exist three distinct TWTs, but only one among them
is selected for transform. The selection of different TWTs is
pixel-wise and the selection process consists of three steps.
First, three high-frequency frames are generated by utilizing
three TWTs. Second, each pixel in the prediction frame selects
the prediction type that produces the minimum absolute value
in the high-frequency frame. Third, the update type of each
pixel in the update frame is selected according to whether
the current pixel participates in the prediction of the previous
frame or the following frame. If a pixel participates in both
the prediction of the previous frame and the following frame,
the temporal CDF 5/3 wavelet update is selected. However,
if the pixel only participates in the prediction of the previous
frame, then the temporal backward Haar wavelet update is
selected, and vice versa.

3) TWIT: TWIT is utilized for converting temporal wavelet
frames back into reconstructed videos. TWIT is designed as
a perfect inversion of the TWT, thus TWIT has three types
corresponding to the three types of TWT. The type of TWIT
is consistent with that of TWT and the formula of TWIT can
be derived from the formula of TWT. For example, if TWT
uses the temporal forward Haar wavelet, the TWIT also uses
the temporal forward Haar wavelet, and the specific formula
is derived from (Eq. 1), the details as follows:

F2t−1
[m, n] = L2t−1

[m, n] −
1
2

× H2t
[m − L MV 2t

x [m, n], n

− L MV 2t
y [m, n]]

F2t
[m, n] = H2t

[m, n] + F2t−1
[m − H MV 2t−1

x [m, n], n

− H MV 2t−1
y [m, n]] (5)

Similarly, the formulas of the other two TWITs can be derived
by (Eq. 2) and (Eq. 4), respectively.

C. Motion Estimation

ME is an important tool for motion alignment between
frames. As such, diverse ME methods have been developed,
including deep learning-based ME methods [33], [34], [35]
and hand-crafted ME methods [36], [37]. Considering the high
computational complexity of deep learning-based methods,
in our method, the hand-crafted ME method with lower
computational complexity is adopted. A mature hand-crafted
method is the ME module [38], [39] in traditional video coding
frameworks [18], [40]. However, the ME in video coding
frameworks commonly considers the bit-rate of coding MV,
which not only increases the computational complexity but
also leads to a poor alignment effect. Instead of directly using
the existing ME module, we implement a ME module to fit
our quality enhancement scheme.

In our method, the TWT requires two MVs: LMV and
HMV. The LMV represents the motion vector between
video/low-frequency frames, while the HMV represents
the motion vector between the high-frequency frame and the
video/low-frequency frame. For the LMV, we implement the
hand-crafted ME module based on traditional block matching
which utilizes the absolute difference sum (SAD) of pixels
between the current block and the reference block as the
constraint condition. In addition, in order to reduce the error
of ME, we incorporate MV smoothness constraint condition.
For the HMV, it cannot be directly searched through the SAD-
based ME. In our method, the HMV is generated by reversing
the LMV. The specific calculation methods of LMV and HMV
are introduced in detail below.

1) LMV: The three-step search algorithm is proposed as the
search method, which offers the advantages of high accuracy
and efficiency. In light of the greater search ratio afforded by
hexagons, it is utilized as the search template. Considering the
sub-pixel motion and the complexity of interpolation, we opt
for the bilinear interpolation method. In addition, to start from
a better initial MV, we utilize the MVP technique which
employs the MVs of neighboring blocks to determine the
starting point of the search.
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Fig. 4. This figure illustrates the MV generated based only on SAD
constraint, and the MV generated based on the integration of SAD and MV
smoothness constraints. Sole reliance on SAD may result in inaccurate results.
However, by imposing constraints on the smoothness of the MV, the correct
MV can be determined.

The SAD-based ME exclusively considers pixel errors,
which may cause matching inaccuracy on small blocks,
as shown in Fig. 4. The red block in the current frame ought
to match the red block in the reference frame, but it matches
the green block because of the slightly smaller SAD. To solve
this problem, we incorporate MV smoothness constraints that
promote the similarity between the searched MV and its neigh-
boring MVs, thereby reducing the probability of mismatch.
The smoothness constraints are achieved in two ways. The
first way is the variable block size technique. Specifically,
if the SAD between the searched optimal reference block
and the current block exceeds the predetermined threshold ϵ,
the current block is divided into a quadtree, then ME is
executed on each sub-block. However, if the SAD is less
than the threshold ϵ, the current block directly employs the
searched MV. The second way is that when calculating the
cost of ME, not only the SAD between the matching block
and the current block is considered, but also the displacement
between the current MV and its adjacent MVs is taken into
count. The specific cost formula is as follows:

Cost = S AD(cur Block, re f Block) + λ × MV D (6)

where MVD represents the absolute difference between the
current MV and its adjacent MVs, and λ is utilized to control
the degree of smoothness.

2) HMV: The HMV employed by the update in TWT
represents the MV between the high-frequency frame and
the video/low-frequency frame. Due to the coefficients of the
high-frequency frame are high-frequency coefficients, HMV
cannot be generated by the pixel value matching-based ME,
as used by the LMV. Drawing on the concept that the backward
optical flow is the inversion of the forward optical flow,
we derive the HMV from its corresponding LMV, which is
temporal aligned with the HMV. For example, in Fig. 3, the
HMV between H2 and F1 corresponds to the LMV between
F2 and F1. The specific derive formula is as follows:

mu = m +
⌊

L MVx [n, m]
⌉

nu = n +
⌊

L MVy[n, m]
⌉

H MVx [nu, mu] = −L MVx [n, m]

H MVy[nu, mu] = −L MVy[n, m] (7)

where the ⌊·⌉ is round function. mu and nu beyond the frame
boundary are directly discarded. In addition, some positions

in the HMV may not be assigned, which indicates that the
correlation between frames is weak. So the update operation
exclusively is executed for the assigned positions in HMV.

D. Network Structure and Loss Function

1) Network Structure: Fig. 5 illustrates the architectures of
the enhancement network and the discriminator network. The
enhancement network employs a plain CNN with multiple
residual blocks to facilitate effective training. The discrimi-
nator network consists of three convolutional layers and one
max pooling operation. By the downsample of max pooling,
the discriminator achieves a larger receptive field.

2) Loss Function: To obtain the training label of the net-
work, we conduct TWT on the original video to generate the
original temporal low-frequency frame L . The pair of L and
the compressed temporal low-frequency frame L̂ are employed
as training data for the enhancement network. The loss func-
tion of the enhancement network consists of three components:
the adversarial loss LG−Adv(θG), the feature domain loss
L Fea(θG), and the wavelet domain loss LWav(θG). In addition,
the loss function of the discriminator network is the adversarial
loss L D−Adv(θD). Here, θG and θD refer to the parameters
of the enhancement and discriminator networks, respectively.
Below are detailed explanations of these loss functions.

a) Adversarial loss: Studies [41], [42] have demon-
strated that the adversarial loss optimizes the distance between
the distribution of generated images and the training set. More-
over, it has been demonstrated in [5] that the distance between
distributions is associated with the perceptual quality, and a
smaller distance leads to a better perceptual quality. Numerous
studies [43], [44], [45] also have verified that incorporating
adversarial loss can improve the perceptual quality. In our
method, we employ the generative adversarial training tech-
nique proposed in the paper [46], which is simple for training
and performs effectively. Specifically, the LG−Adv(θG) and
L D−Adv(θD) are as follows,

LG−Adv(θG) =
1
2

× E[

∣∣∣D(G(L̂)) − D(L)

∣∣∣]
+

1
2

× E[D(L) − D(G(L̂))] (8)

L D−Adv(θD) = −E[D(L) − D(G(L̂))] (9)

b) Feature loss: To further improve the perceptual qual-
ity, similar to the previous work [44], we calculate the
difference between the deep features of the enhanced frame
G(L̂) and the original label L . The deep feature map of the
pre-trained VGG-19 [47] network before the activation layer
is employed to calculate the feature distortion, specifically as
shown in the following formula,

L Fea(θG) =

∥∥∥ fV GG(L) − fV GG(G(L̂)))

∥∥∥
1

(10)

where fV GG() represents the feature maps from VGG-19.
c) Wavelet loss: Considering the training of GAN is

not stable, in addition, we employ the wavelet domain loss
to stabilize the training process. Specifically, we utilize the
Charbonnier distance [48] between the original label L and
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Fig. 5. Architectures of the enhancement network and the discriminator network.

Fig. 6. The temporal low-frequency frame and three temporal high-frequency frames obtained by the 2-level TWT on four frames.

the enhanced frame G(L̂) as the wavelet domain loss. The
specific formula is as follows,

LWav(θG) =

√∥∥∥L − G(L̂)

∥∥∥
2
+ ϵ2 (11)

where ∥.∥2 represents the 2-norm, ϵ is a very small hyperpa-
rameter.

d) Overall loss: The overall loss function of the enhance-
ment network is a weighted combination of the adversarial
loss, the feature loss, and the wavelet loss, as shown below,

min
θG

: α × L Fea(θG) + β × LWav(θG) + γ × LG−Adv(θG)

(12)

where α, β, and γ are hyper-parameters controlling the weight
of the three losses. The loss function of the discriminator
network is (Eq. 9). The θG and θD are alternately optimized
by gradient descent for adversarial training.

IV. ANALYZING THE EFFECT OF TFA

In this section, we focus on analyzing the effect of TFA.
To verify the conjecture that the temporal low-frequency
content is the main content of the video and the tempo-
ral high-frequency content is the variation between frames,
we perform 2-level TWT on four video frames, yielding
a temporal low-frequency frame L L and three temporal
high-frequency frames {L H, H1, H2}. The results are illus-
trated in Fig. 6. It can be found that the main content of
the video concentrates on the low-frequency frame, while the
high-frequency frames are some residual information.

We further design a replacement experiment to quantita-
tively verify that exclusively enhancing low-frequency frames
can improve the perceptual quality of the overall video. The
replacement experiment has three steps. First, we perform
4-level TWT on compressed videos to obtain low-frequency
frames L Fcom and high-frequency frames H Fcom . Sec-
ond, similarly, original low-frequency frames L Forg and
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TABLE I
THE AVERAGE PI [49] RESULT OF COMPRESSED VIDEOS, REPLACED

VIDEOS AND ORIGINAL VIDEOS ON THE TEST SET OF
JCT-VC [11]. REPLACED VIDEOS ARE GENERATED

BY REPLACING LOW-FREQUENCY FRAMES OF
COMPRESSED VIDEOS WITH THOSE OF

ORIGINAL VIDEOS

high-frequency frames H Forg are obtained by conducting
4-level TWT on original videos via the MV of compressed
videos. Finally, compressed low-frequency frames L Fcom are
replaced with original low-frequency frames L Forg , that is,
reconstructed videos are generated by performing TWIT on
L Forg and H Fcom . The experiment is conducted on the test
set of JCT-VC [11], and compressed videos are obtained
by HM-16.5 [18] with Low Delay (LD) configuration at
QP = 37. The average perceptual index (PI) [49] index of
compressed videos, replaced videos, and original videos are
shown in Table I. Compared with the PI of compressed
videos, the PI of the replaced videos is significantly lower,
which is almost the same as that of original videos. This
shows that the low-frequency frames obtained by the TWT
are the main content of videos, and exclusively enhancing
the low-frequency frames can improve the perceptual quality
of videos. In Fig. 1, we visualize the frames of compressed
videos, replaced videos, and original videos. As shown in the
figure, replaced videos are more fidelity to original videos, and
significantly better than the compressed videos.

V. EXPERIMENTS

A. Settings

1) Datasets: In order to include videos of different contents
and resolutions, we construct a composite training dataset that
comprises three parts: MFQE [4], TVD [50], BVI-DVC [51].
All sequences are compressed by HM-16.5 [18] under LD
configuration with QPs = 37 and 42, respectively.

To evaluate the performance of our method, we test our
method and other quality enhancement methods on the stan-
dard test sequences of JCT-VC [52]. All test sequences
are compressed by HM-16.5 under LD configuration with
QPs = 37 and 42, respectively.

2) Implementation Details: The followings are some
hyper-parameters and training strategies in our experiments.
We employ the 4-level TWT which transforms sixteen frames
into one low-frequency frame and fifteen high-frequency
frames. The training process of the enhancement network
is divided into two stages. In the first stage, the training
loss function only includes wavelet domain loss, that is,
the α, β, γ in the (12) are set to 1, 0, 0, respectively.
Adam optimizer [53] with lr = 5 × 10−5, β1 = 0.9 and
β2 = 0.999 is utilized to train the enhancement network.
In the second stage, the pre-trained model in the first stage
is loaded as an initialization. The training loss function
contains the wavelet domain loss, the feature domain loss,
and their adversarial loss, and the weights α, β, γ are
set to 1 × 10−4, 1 × 10−2, 1 × 10−2, respectively. RMSprop

optimizer [54] with lr = 5 × 10−5, α = 0.9 and ϵ = 10−8

is utilized to train the enhancement network and discriminator
network. The enhancement network and discriminator network
are optimized in an alternating manner. The discriminator
network is optimized in five rounds first, then the enhancement
network is optimized in one round.

B. Quantitative Comparison

In this subsection, we conduct a quantitative comparison of
our proposed method with other quality enhancement methods.
Similar to prior studies [9], [10], we employ the learned
perceptual image patch similarity (LPIPS) [55] and PI [49] as
the evaluation criteria. These metrics are commonly employed
for perceptual quality evaluation. We compare our proposed
method with MFQE 2.0 [4], CVRGAN [8], MW-GAN [9],
and MW-GAN+ [10]. Among them, MFQE2.0 [4] is an excel-
lent objective quality enhancement method. CVRGAN [8]
firstly employs the adversarial loss in perceptual quality
enhancement on compressed videos and demonstrates notable
improvement in perceptual quality for compressed videos.
MW-GAN introduces multi-level wavelet-based decomposi-
tion, which helps to significantly improve the perceptual
quality. Furthermore, MW-GAN+ is an enhanced version of
MW-GAN, which has incorporated many significant technolo-
gies and exhibited superior performance over MW-GAN.

Table II presents the 1LPIPS and 1PI metrics calculated
between enhanced videos and compressed videos on the test
set of JCT-VC [11]. Note that the decreased LPIPS and PI
indicate better perceptual quality. As shown in table II, our
method outperforms all other methods in terms of LPIPS
and PI. Specifically, the average 1LPIPS and 1PI of our
method at QP = 42 are −0.065 and −1.54, which are 18.2%
and 13.2% better than that of MW-GAN+. At QP = 37,
the average 1LPIPS and 1PI of our method are −0.064
and −1.38, which are 20.7% and 20.5% better than that of
MW-GAN+. In contrast, the MFQE which mainly focuses on
objective quality enhancement has positive 1LPIPS and 1PI
values, indicating the degradation of perceptual quality.

C. Subjective Comparison

In this subsection, we focus on the subjective comparison
of our proposed method with other methods. Fig. 7 visual-
izes the subjective comparison of different method, including
compressed videos, MW-GAN, MW-GAN+, our method, and
raw videos. The sequences of RaceHorses, PeopleOnStreet,
BasketballDrill, and Traffic from JCT-VC [11] are shown
in Fig. 7. It can be found that the videos processed by our
proposed method have sharper edges and better perceptual
qualities.

To further evaluate the subjective quality of our method,
we conduct the mean opinion score (MOS) test. Fifteen
subjects participate in the MOS test, and the dual incentive
approach is employed. Each subject rates an integral score
(from 1 to 5) for each video and a higher score indicates
better perceptual quality. The test set is the sequences of
JCT-VC [11] and is compressed by HM-16.5 with QP = 37.
A “center crop” is applied to videos with resolutions exceeding
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TABLE II
OVERALL 1LPIPS AND 1PI BETWEEN COMPRESSED VIDEOS AND ENHANCED VIDEOS ON THE TEST SET OF JCT-VC [11]

Fig. 7. Visualization comparison of compressed videos, videos enhanced by MW-GAN, videos enhanced by ME-GAN+, videos enhanced by our method,
as well as raw videos on the test sequences of JCT-VC [11] (Zoom in for best view).

1080p (e.g., Class A). Subjects are instructed to give scores for
the compressed videos, enhanced videos by MW-GAN+ [10],

and enhanced videos by our method. MOS results are pre-
sented in Table III. Compared with compressed videos,
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TABLE III
THE COMPREHENSIVE RESULTS (MOS, 1LPIPS, FLOPS) OF
COMPRESSED VIDEOS, VIDEOS ENHANCED BY MW-GAN+,

AND VIDEOS ENHANCED BY OUR METHOD ON THE
TEST SET OF JCT-VC [11]

videos enhanced by our method achieve a significant improve-
ment in perceptual quality. In addition, compared with the
state-of-the-art method (MG-GAN+), the computational com-
plexity of our method is much less than the state-of-the-art
method, while achieving better performance on LPIPS and PI
and comparable performance on MOS.

D. Computational Complexity

In this subsection, we compare the computational complex-
ity (floating point operations, FLOPs) of our method with other
perceptual quality enhancement methods. The computation
burden of our method primarily comprises three components:
ME, TWT & TWIT, and the enhancement of low-frequency
frames.

1) ME: It consists of three stages: interpolation, block-
based ME for LMV, and HMV generation. For the interpo-
lation, we adopt the Bilinear and the precision is set to 1

4 ,
thereby requiring 135×H×W FLOPs for a 3×H×W RGB
input. For the block-based ME for LMV, the search range
of hexagonal search is set to 64 and the search block size
varies from 64×64 to 4×4, thereby requiring 2587.18×H×W
FLOPs for a 3×H×W RGB input. For the HMV generation,
according to equation (6) in Section III-C.2, 8 × H × W
FLOPs are performed for HMV generated from LMV in total.
Therefore, in once ME, 2730.18×H×W FLOPs are required
for a 3×H×W RGB input in total (upper limit). Note that the
variable search block sizes are not tried for each block, early
termination algorithm is designed in the hand-crafted ME.

2) TWT & ITWT: It consists of two stages: wavelet trans-
form and selection of different TWT types. First, for the
wavelet transform, three types of TWT (temporal for-
ward/backward Haar wavelet transform, temporal CDF 5/3
wavelet transform) are performed on the 3×H ×W RGB input
frames, respectively. And the inverse transform takes the same
amount of computational complexity as the forward transform,
thereby requiring 60×H×W FLOPs for the 3×H×W RGB
input frames. Second, for the selection of different TWT types
for each pixel, the high-frequency energy computation and
the different type’s comparison require 17×H×W FLOPs.
Therefore, in once TWT & ITWT, 77×H×W FLOPs are
required for the 3×H×W RGB input frames in total.

3) Enhancement of Low-Frequency Frames: The enhance-
ment of low-frequency frames utilizes the enhancement
network illustrated in Fig. 5, thereby requiring 335,232×

H×W FLOPs for a 3×H×W input in total.

TABLE IV
THE 1LPIPS, 1MUSIQ AND 1CLIP-IQA BETWEEN COMPRESSED

VIDEOS AND VIDEOS ENHANCED BY DIFFERENT LEVEL TWT-BASED
METHODS ON THE TEST SEQUENCES OF JCT-VC AND THE FLOPS

DENOTES THE COMPUTATIONAL COMPLEXITY OF ENHANCING
THIRTY-TWO FRAMES WITH A RESOLUTION

OF 3 × 512 × 512

In general, 4-level TWT-based perceptual quality enhance-
ment method is adopted in our framework, and sixteen
frames are enhanced simultaneously. Thirty times MEs,
fifteen times TWT & TWIT, and once low-frequency frame
enhancement are required in total. For the input of sixteen
3×H×W frames, 418292.4×H×W FLOPs are required in
total. For image/single-frame quality enhancement methods
which enhance each frame individually, the enhancement net-
work is invoked sixteen times for the input of sixteen 3×H×W
frames. If the enhancement network is the same as that in our
method, 5,363,712×H×W FLOPs are required. Our 4-level
TWT-based method can save nearly 13× the amount of com-
putation. Furthermore, compared with multi-frame assisted
quality enhancement methods that employ additional deep
learning-based motion alignment, our method can save more
amount of computation.

VI. ADDITIONAL ANALYSIS

A. The Impact of Different Level TWT

In this subsection, we analyze the impact of different levels
of TWT. For different level TWT-based enhancement methods,
Table IV presents the results of 1LPIPS, 1MUSIQ [56], and
1CLIP-IQA [57] between compressed videos and enhanced
videos on the JCT-VC test set at QP = 37, along with
the FLOPs required for enhancing thirty-two frames with a
resolution of 3 × 512 × 512. Note that the decreased LPIPS,
increased MUSIQ, and CLIP-IQA indicate better perceptual
quality. In Table IV, the 0-level TWT represents that no
TWT is employed in our method, which is the same as
image/single-frame quality enhancement methods. The 5-level
TWT-based enhancement method transforms thirty-two com-
pressed frames into one temporal low-frequency frame and
thirty-one high-frequency frames, and only the low-frequency
frame is enhanced through the enhancement network. Note
that we train the enhancement network of each decomposed
level on the temporal low-frequency frames generated by the
corresponding decomposed TWT level.

For the 0-level TWT-based method, it achieves a superior
subjective quality but with heavy computational complexity.
For the 5-level TWT-based method, it can greatly reduce
computational complexity, but the performance of quality
enhancement is slightly poor. From the results of the three
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TABLE V
THE AVERAGE 1LPIPS, 1MUSIQ AND 1CLIP-IQA BETWEEN
COMPRESSED VIDEOS AND VIDEOS ENHANCED BY DIFFERENT
LEVEL TWT-BASED METHODS WHICH ENHANCES HIGH- AND

LOW-FREQUENCY FRAMES SIMULTANEOUSLY

metrics as a whole in Table IV, it demonstrates the trade-
off between computational complexity and the performance
of quality enhancement that the increase of decomposed levels
leads to low performance with low computational complexity.
In detail, the number of low-frequency frames decreases with
the increase of decomposed levels, and the low-frequency
frames can only reflect the less main content of video frames.
Therefore, for the enhancement of low-frequency frames,
less main content of video frames can be enhanced, and
the performance is limited. Therefore, in our default setting,
we compromise to consider the trade-off, and adopt the 4-level
TWT in our method.

B. The Performance of Enhancing Both High- and
Low-Frequency Frames

In this subsection, we present the performance of enhanc-
ing temporal high- and low-frequency frames simultaneously.
The enhancement network structure of high-frequency frames
is the same as that of low-frequency frames, which is
shown in Fig. 5. However, the training set is replaced from
low-frequency frames with high-frequency frames. On the test
set of JCT-VC [11], we conduct the experiment of enhancing
both high- and low-frequency frames with 0-level to 5-level
TWT-based methods, respectively. Table V shows the average
1LPIPS, 1MUSIQ [56], and 1CLIP-IQA between com-
pressed videos and enhanced videos. Compared with Table IV,
the results show that the simultaneous enhancement of high-
and low-frequency frames may not obviously improve perfor-
mance and even decrease performance, which verifies that our
motivation that exclusively enhances temporal low-frequency
frames is an efficient way to enhance the quality.

C. The Performance of Objective Quality Enhancement

In this subsection, we explore whether our method can
be applied for objective quality-oriented enhancement on
compressed videos. Specifically, we utilize MSE as the loss
function to train the enhancement network. We conduct the test
experiment on the test set of JCT-VC [11], and Table VI shows
the average PSNR of compressed videos, videos enhanced
by the 0-level TWT-based method, and videos enhanced by
the 4-level TWT-based method. It can be found that both
the 0-level TWT-based method and the 4-level TWT-based
method can significantly improve the objective quality of com-
pressed videos. However, compared with the 0.47dB PSNR
improvement of the 0-level TWT-based method, the 4-level

TABLE VI
THE AVERAGE PSNR RESULT OF VIDEOS WITHOUT ENHANCEMENT,

VIDEOS ENHANCED BY THE 0-LEVEL TWT-BASED METHOD,
AND VIDEOS ENHANCED BY THE 4-LEVEL TWT-BASED

METHOD ON THE TEST SET OF JCT-VC [11]

TWT-based method only has 0.3dB improvement, which is
36% lower than the 0-level TWT-based method. This shows
that there are still certain challenges to utilizing the TWT in
the objective quality enhancement. The reason is that objective
quality is susceptible to the accuracy of pixel values, but the
TWT-based method does not process pixels of each frame,
resulting in the performance of objective quality enhancement
being relatively poor. However, for the perceptual quality
enhancement, the pixel value of each frame does not need
to be consistent with the original uncompressed pixel value,
so the performance of perceptual quality enhancement is better.

VII. CONCLUSION

In this paper, we propose the perceptual quality enhance-
ment of compressed videos that improves by exclusively
enhancing low-frequency content, which exploits the lim-
ited computational resource more efficiently. Specifically,
we design a TWT-based low-complexity perceptual quality
enhancement method. The TWT with hand-crafted ME is
utilized to implement the TFA, which transforms the com-
pressed video into temporal high- and low-frequency frames,
then an enhancement network is utilized to enhance the
low-frequency frames. Finally, TWIT is performed on the
temporal high-frequency frames and the enhanced temporal
low-frequency frames to generate the enhanced video. Exten-
sive experimental results show that the performance of our
method is comparable with the state-of-the-art methods, and
our method has significantly lower complexity.

In the future, our method can be further improved in some
aspects. (1) The MV in our method is generated by an
additional hand-crafted ME module. However, the compressed
video bitstream has contained the motion field information,
so is it possible to use the MV directly? This has two
potential problems. First, the MV is estimated between the
compressed reference frame and the original current frame,
which is mismatched with compressed frames in our method.
Second, the MV is estimated from different direction reference
frames and different distances reference frames, it is difficult
to use in our method. (2) From Section V-D, we find that
the DNN-based enhancement network occupies most of the
computation. To further reduce the computational complexity,
we may try to design a more efficient and effective perceptual
quality enhancement network with the help of some advanced
techniques, such as knowledge distillation.
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