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Abstract—In modern video coding standards, block-based inter
prediction is widely adopted, which brings high compression
efficiency. However, in natural videos, there are usually multiple
moving objects of arbitrary shapes, resulting in complex motion
fields that are difficult to represent compactly. This problem
has been tackled by more flexible block partitioning methods
in the Versatile Video Coding (VVC) standard, but the more
flexible partitions require more overhead bits to signal and still
cannot be made arbitrarily shaped. To address this limitation, we
propose an object segmentation-assisted inter prediction method
(SAIP), where objects in the reference frames are segmented
by some advanced technologies. With a proper indication, the
object segmentation mask is translated from the reference frame
to the current frame as the arbitrary-shaped partition of dif-
ferent regions without any extra signal. Using the segmentation
mask, motion compensation is separately performed for different
regions, achieving higher prediction accuracy. The segmentation
mask is further used to code the motion vectors of different
regions more efficiently. Moreover, the segmentation mask is
considered in the joint rate-distortion optimization for motion
estimation and partition estimation to derive the motion vector
of different regions and partition more accurately. The proposed
method is implemented into the VVC reference software, VTM
version 12.0. Experimental results show that the proposed method
achieves up to 1.98%, 1.14%, 0.79%, and on average 0.82%,
0.49%, 0.37% BD-rate reduction for common test sequences,
under the Low-delay P, Low-delay B, and Random Access
configurations, respectively.

Index Terms—Inter prediction, motion compensation, motion
estimation, motion vector coding, object segmentation, partition
estimation, video coding, VVC.

I. INTRODUCTION

Block-based hybrid coding framework has been widely
adopted in the modern video coding standards, including
H.265/High Efficiency Video Coding (HEVC) [1] and the
state-of-the-art Versatile Video Coding (VVC) [2]. To reduce
the temporal redundancy in sequential frames, inter prediction
makes a major contribution to these standards and plays a key
role in hybrid video coding schemes [3]–[6].

In general, inter prediction is used to predict the current
frame from previously coded frames. To improve the coding
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performance and reduce the implementation difficulty, block-
based inter prediction is used to generate the predictive frame.
In block-based inter prediction, the current frame is usually
divided into non-overlapping rectangular blocks as the basic
units to match prediction. For each block, a motion vector
(MV) is used to indicate the displacement between the to-be-
coded block and the prediction block in the reference frame. In
the entire prediction process, the MV of each block is derived
by motion estimation (ME). Then the block-based motion
compensation (MC) is utilized to generate the prediction
blocks by the indication of MV.

Block-based ME and MC are generally performed on the
assumption that the motion of pixels within a block tends to
be uniform. This assumption makes the motion field easy to
represent with low complexity in hybrid coding framework.
However, in natural videos, there are usually multiple moving
objects of arbitrary shapes in video frames, leading to complex
motion fields. When using the block-based motion information
description method, the block-level MV may not reflect the
pixel-level actual motion, and significant prediction errors
may be incurred. Therefore, obtaining the flexible partition
for moving objects and compactly representing their motion
fields is the key to reducing the prediction errors, thereby
achieving a good trade-off between the bit consumption of
motion information and prediction accuracy. During the devel-
opment of video coding standards, many partitioning methods
have been proposed to approach the efficient representation
of complex motion fields. These methods can be classified
into three categories: rectangular partition methods, line-based
geometric partition methods, and segmentation-based partition
methods.

For rectangular partition (RP) methods, as shown in
Fig. 1 (a), the rectangular partition structure [7]–[9] is widely
used in block-based video coding standards. Partitioning
blocks into smaller ones can handle complex motions to some
extent. However, due to the inherent shape limitation of the
block-based partition, it is difficult to align with natural objects
of arbitrary shape. In particular, the block containing object
boundary usually consists of regions in different motion fields.
If the rectangular partition is used to capture the real motion
of each region, it may cost a number of bits.

Line-based geometric partition (GP) methods, as shown in
Fig. 1 (b), have been intensively studied to capture the non-
uniform motion field in HEVC [10] and VVC [11]. In GP,
a predefined straight line is used to split a rectangular block
into two wedge-shaped sub-regions. Each sub-region has its
motion information and performs MC to obtain its predic-
tion. Although the geometric partition can divide the motion-
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(a) Rectangular partition (RP) (b) Line-based geometric partition (GP) (c) Segmentation-based partition (SP)

Fig. 1. The partition results of different methods in the actual coding process, where (a) uses the rectangular partition (RP), (b) uses the RP + line-based
geometric partition (GP), (c) uses the RP + segmentation-based partition (SP). The block is in the 71-th frame of the BQMall sequence.

inconsistent sub-regions in a block to individually perform
MC, the straight line can only approximate the discontinuities
of the motion field. Meanwhile, extra bit consumption for
partition line representation is unavoidable.

Segmentation-based partition (SP) methods, as shown in
Fig. 1 (c), tentatively introduce the segmentation mask as
the partition representation into the existing video coding
standards. [12]–[14] proposed the irregular segmented line to
accurately approximate the arbitrary object shape by applying
the object-oriented segmentation algorithm on the reference
frame/block. The same segmentation algorithm is executed
at the encoder and decoder to reduce the overhead bits for
the transmission of partition information. Although the related
work of SP achieves good results to some extent, they still
have two drawbacks. First, previous segmentation algorithms
mostly rely on hand-crafted constraints, and it is difficult
to approximate the accurate partition of different motion-
inconsistent regions. Second, with the segmentation obtained,
previous SP methods do not sufficiently take advantage of the
object-aware partition information hints for coding process,
which limits the potential of fine-grained partition to improve
the coding efficiency.

Recently, with the repaid development of segmentation
technologies [15]–[18], moving objects can be pixel-accurately
segmented in video frames. Inspired by them, we rethink
the assistance of segmentation applied in inter prediction,
and sufficiently explore the guidance of accurate object-aware
partition information for prediction and coding process in
codec. In this paper, we propose an object segmentation-
assisted inter prediction (SAIP) method that does not restrict
the partitioning shape and further takes advantage of the
segmentation information to assist the entire inter prediction
process, including MC, motion vector coding (MVC), and ME.

Specifically, in our method, some advanced segmentation
technologies are used to segment objects in the reference
frames. With a proper indication, the object segmentation mask
is translated from the reference block to the coding block as
the arbitrary-shaped partition of motion-inconsistent regions.
Note that the partition information can be inferred based
on the coded motion information instead of being explicitly
signaled. With the assistance of the translated segmentation
mask, integer-pixel and fractional-pixel MC are separately
performed for different regions to achieve higher prediction
accuracy. In addition, the segmentation mask is utilized to
assist the MVC of different regions by adaptively selecting

and ranking the high-probability candidates to construct the
candidate list, which considers different qualities of the poten-
tial MV candidates to improve the efficiency of motion data
transmission. In particular, the segmentation mask is applied
to the joint rate-distortion optimization (RDO) for accurate
partition estimation and ME at the encoder. The derivation of
different MV candidates in ME implicitly considers the various
partition candidates in partition estimation for the coding block
to estimate jointly.

In summary, we have made the following contributions that
will be detailed in this paper:
• We propose an object segmentation-assisted inter predic-

tion framework to leverage the segmentation to assist the
entire inter prediction process, including MC, MVC, and
ME. In this framework, we test the recently advanced
segmentation method and verify its effectiveness for
video coding.

• We design a segmentation-assisted motion compensation
(SA-MC) method to separately compensate for the dif-
ferent motion-inconsistent regions with specific design of
different MC steps to achieve accurate region-level MC.

• We design a segmentation-assisted motion vector coding
(SA-MVC) method to efficiently code the MVs of differ-
ent motion-inconsistent regions.

• We design a segmentation-assisted rate-distortion op-
timization (SA-RDO) to joint the partition estimation
and ME, and further precisely estimate the partition of
coding block and the MV of different motion-inconsistent
regions.

II. RELATED WORK

In this section, we review the previous work that relates to
our research in two aspects. First, we introduce some methods
for tackling the representation of complex motion fields in
video coding standards. This problem can be viewed as a
partition problem, and these methods can be further divided
into three categories: rectangular partitioning schemes, line-
based geometric partitioning schemes, and segmentation-based
partitioning schemes. Second, we introduce some advanced
segmentation technologies.

A. Partitioning Schemes
1) Rectangular Partitioning Schemes: Dividing blocks into

smaller ones helps the codec achieve a more accurate motion
description. Rectangular partitioning structures are widely
used in H.265/HEVC and H.266/VVC, which significantly
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influence the compression performance. In HEVC, a quadtree
(QT) partition structure [8] is adopted to replace the macro-
block used in previous H.264/AVC [7]. Using the quadtree
structure is beneficial for adapting to various local content
in natural videos. In VVC, a quadtree plus nested multi-type
tree (QTMTT) structure is further introduced, which enables
binary-tree (BT), and ternary-tree (TT) partitions besides QT
partition [9]. The QTMTT structure possesses more flexibility
because it can generate coding units with more shapes and
sizes. Although the coding performance benefits from the
flexibility of partition structure, it is difficult to represent
the partition of motion area for natural objects with arbitrary
shapes. Particularly, the blocks with object boundaries contain
multiple sub-regions moving in different directions. With the
block-based motion assumption, rectangular partitioning is
utilized to capture the real motion characteristics for each
region, which will cause more overhead bits.

2) Line-Based Geometric Partitioning Schemes: Line-
based geometric partitioning schemes (GEO) have been in-
tensively studied to capture the non-uniform motion field
[10], [11], [19], [20] during the development of HEVC and
VVC. In GEO [11], [19], a predefined straight line is used to
split the rectangular block into two wedge-shaped sub-parts.
Each sub-part has its MV to describe the motion field and
performs MC to obtain the prediction. In VVC, merge-mode-
based GEO with 64 partitioning modes has been adopted [11].
The mode is selected for a coding unit from the predefined
64 partition line candidates, and the description information
of partition line is represented in the form of the offset
parameter ρ and angle parameter ϕ. For motion information
of sub-parts, only unidirectional motion information is used,
and the GEO merge list is derivated from the regular merge
list by the parity of the GEO merge index. To economize
the bits consumption of GEO, [20] proposed to utilize the
spatio-temporal correlation to guide the efficient partitioning
mode derivation and motion information coding. Although
these methods [10], [11], [19], [20] can divide the motion-
inconsistent sub-parts and represent their motion information
with limited bits consumption in a block to perform MC, the
straight line can only approximate the discontinuities of the
motion field. Meanwhile, bit consumption for partition line
representation is unavoidable.

3) Segmentation-Based Partitioning Schemes: To represent
the motion field of arbitrary-shaped object accurately in natural
videos, segmentation-based partitioning and coding schemes
are tentatively introduced into video coding frameworks and
standards [21]–[24]. In the segmentation-based partitioning
schemes, the partition is mainly derived from the reference
frame/block by applying a segmentation algorithm at the
encoder/decoder.

In [25], Pardas et al. proposed a segmentation-based parti-
tion tree theory for low-bit coding. The partition of multiple
regions is derived from the projected merging and segmenta-
tion. However, the region-based partition is a rough estimation
for the high-texture regions, and how to efficiently extract
and represent the irregular partition line information needs
to be further studied. In [26], the predictive motion field
segmentation method was proposed to tackle the problem of

partition signaling. To reduce the overhead bits for partition
information, [12], [13] proposed that the object-oriented par-
tition information was derived from the reference frame by
the conventional segmentation method, and one MV was used
to signal the position where the segmentation matched the
object edges. In [27], Kim et al. proposed a novel segmen-
tation method, in which two MVs were signaled and the
differences between these two prediction blocks were used
for segmentation. Although these methods [12], [13], [27]
adopt different strategies to derivate and signal the partition
information, the overhead bits are unavoidable. Meanwhile, for
ME of different regions, most methods are directly inherited
from the normal prediction modes (like AMVP and Merge)
without any modification, and more overhead bits for motion
information coding are needed.

Based on these limits, in [14], Wang et al. proposed a
three-zone segmentation-based partitioning method to achieve
object-oriented MC for prediction refinement. Based on zone
partitioning, different MC methods are used for various zones.
However, to reduce the time complexity in partition derivation,
[14] derivated the segmentation of the optimal prediction block
obtained by all inter prediction modes as the partition of
current block. And the motion information of each zone is
derivated under the strong assumption that the foreground
zone’s motion is intense and the background zone’s motion
is relatively slight. It may not essentially tackle the problem
of multiple motion information matching for different zones in
a block. And the hypothesis-based partition and MV derivation
are individually performed, which limits the accuracy of
partition and MV, thereby affecting the prediction quality.

B. Advanced Segmentation Technologies
1) Image Instance Segmentation (IIS): Image segmentation

is an essential component in many visual understanding sys-
tems, which aims to detect all objects in the input image
and assign a pixel-level mask with a category label for each
instance of interest in the image [15]. It involves partitioning
images into multiple segments or objects. Over the past few
years, deep learning models have yielded a new generation
of image segmentation methods with remarkable performance
improvements on popular benchmarks. As the most classic and
effective IIS scheme, Mask R-CNN [28] introduced a fully
convolutional mask head to the Faster R-CNN [29] detector.
Cascade Mask R-CNN [30] combined Cascade R-CNN with
Mask R-CNN to achieve good segmentation results. Recently,
the Sample Consistency Network (SCNet) [31] proposed a
novel training method and reinforced the reciprocal relation-
ships among subtasks, whose average precision (AP) for box
and mask prediction was 48.3 and 42.7, respectively. The
running time is 38% faster than the Cascade Mask R-CNN.

2) Video Object Segmentation (VOS): Video Object Seg-
mentation is an emerging high-level video processing task
and has been extensively studied in recent years. It refers
to identifying and segmenting the dominant, general objects
in video sequences. It is widely used in video analysis and
editing-related application scenarios. Recently, most methods
fit a model using the initial segmentation [32] or leverage
temporal propagation [33], [34], particularly with spatio-
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Fig. 2. Illustration of the proposed object segmentation-assisted inter prediction (SAIP) framework from the perspective of decoding. Boxes represent the
sub-modules of SAIP, and arrows indicate the data flow direction. Section indicates the corresponding chapter of the module.

temporal matching [35]. Space-time memory-based networks
(STM) [36] are popular due to their high performance and
simplicity. As the best-performing VOS in recent years, space-
time correspondence network (STCN) [37] subtracts from
STM to arrive at a minimalistic form of matching networks and
achieves new state-of-the-art results on the benchmark [38].

III. PROPOSED FRAMEWORK

Figure 2 shows our proposed object segmentation-assisted
inter prediction (SAIP) framework from the perspective of
decoding. In SAIP, the key lies in that the segmentation
information is utilized to assist the overall prediction and
coding process in codec. It mainly consists of four modules,
including MC (Section V), MVC (Section VI), rate-distortion
optimization for ME and partition estimation (Section VII),
segmentation for reference pictures (Section IV). The differ-
ence between the encoder and decoder is only the additional
process of ME and partition estimation. In this section, we
briefly introduce the process of SAIP in the decoder.

In the decoding process (Fig. 2 ), different from the previous
inter prediction methods, the coding block is divided into mul-
tiple motion-inconsistent regions (primary region, secondary
region) to match the prediction in SAIP. First, the motion
data of the current coding block is obtained by parsing the
bitstream. Concerning the motion data for the coding block,
two MVs (MVprimary, MVsecondary) and reference picture
indexes (Refprimary, Refsecondary) correspond to the mo-
tion of different regions (primary motion, secondary motion).
The partition of the coding block is translated from the
segmentation mask of the reference block by the guidance
of MVprimary. Second, the segmentation mask is utilized
to derive the motion information of the secondary region
(MVsecondary). Third, with the assistance of the segmentation
mask, the final prediction can be derived by MC based on
MVs of different regions.

IV. LEARNED SEGMENTATION FOR REFERENCE PICTURES

Obtaining the accurate partition of the motion area is the
key to achieving efficient inter prediction. In the traditional

coding process, the block-based partition is difficult to align
with the irregular shape of the natural object. With the maturity
of deep learning-based segmentation methods, the pixel-level
demarcation representation ability described by the segmenta-
tion map is also increasing. Therefore, the combination of the
segmentation method with pixel-level demarcation represen-
tation precision and the codec with block-level precision has
the potential to more accurately characterize video motions
along the time, thus further improving the efficiency of video
coding.

Video object segmentation (VOS) aims to identify and
segment target instances in a video sequence. According to the
strong temporal correlation between multiple video frames, the
VOS model mainly propagates the object target information
of the label frame to infer the segmentation for the remaining
frames. For each frame, the mask represents the segmentation
information of the foreground and background. In our work,
VOS is utilized to assist the partition process in obtaining
the accurate partition of every object’s shape. We introduce
the recent state-of-the-art segmentation method [31] [37] into
codec to derive the object segmentation of the multiple recon-
structed reference frames and translate the segmentation map
of the reference frame to the current frame as the partition of
motion-inconsistent regions. Here we focus on the details of
how to embed the segmentation module into the codec, and
the detailed network design follows the configurations in [31]
[37].

The VOS methods can be grouped into two categories in
common scenarios: unsupervised and semi-supervised. The
difference is that the latter needs to obtain the annotation of the
first frame as the tracking label source before the segmentation
process. Due to the coding process, the segmentation process
needs to be fully automatic. Although some automatic VOS
methods can be automated, their segmented precision is far
less accurate than that of semi-supervised VOS (SVOS).
Therefore, we apply the state-of-the-art SVOS model space-
time correspondence network (STCN) [37] to our framework.
The STCN is a hybrid propagation-based and detection-
based method based on a spatio-temporal attention mecha-
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Fig. 3. The object segmentation workflow on the reference frames.

nism, which models the complex dynamic spatio-temporal
dependencies of instances in multiple frames and excellently
captures the motion area to achieve accurate segmentation of
instances in each frame. To replace the process of manually
extracting the first frame annotations in SVOS with automatic
network generation, we propose cooperation between SVOS
and image instance segmentation (IIS). IIS is utilized to obtain
the annotations required for the first frame of SVOS in the
coding process. For IIS, we apply the state-of-the-art IIS model
sample consistency network (SCNet) [31].

The derivation process of the reference picture’s segmenta-
tion map is shown in Fig. 3 . From the experiment for different
segmentation configurations in the reference pictures, we find
that the segmentation accuracy of IIS is influenced by the
quantization parameters (QP) of the reference picture, and the
VOS is not much affected by the picture quality. To fit the
coding frame structure (group of pictures, GOP), SCNet is
utilized to segment the first frame of the GOP as the tracking
label source of SVOS and the STCN segments the other frames
of the GOP.

When dealing with multi-frame segmentation in a GOP,
first, SCNet is utilized to detect and segment foreground
instances in the first frame of a GOP and obtain the info-
graphic of instances, which contains the bounding box and
segmentation of instances. Second, the instance segmentation
information of the first frame S0 is used as the reference
for STCN inference. According to S0, the STCN tracks the
instance in each subsequent frame and obtains Si of the
subsequent frame. To represent different instances in the mask,
the segmentation of each frame Si uses different colors to
represent different instances and the mask Mi of each frame
is derived by binarizing Si. Finally, we add a buffer memory
for each frame to store all Mi to facilitate data interaction.
The derivation of Mi is expressed as follows:

Mi(x, y) =

{
1 if Si(x, y) ∈ ΦI

0 otherwise
(1)

where Mi(x, y) and Si(x, y) represent the pixel values of Mi

and Si, and ΦI denotes the instance sets.
In the case of coding requirements, sequences are also

long-term. VOS methods are especially suitable for processing
short-term sequences. Although the STCN has largely solved
the common challenges of VOS such as object occlusion, fast
motion and deformation to a certain extent, STCN still cannot
solve more complex motion very well in long-term sequences.
We find many scene changes in long-term sequences with new
objects appearing and camera movement. Since the STCN

does not have the segmentation information of these new
objects in the annotation of the first frame, it cannot segment
such new objects in time, resulting in a decrease in the
accuracy of the segmentation area and contour of the frame.
To solve this problem, the interval of the label mask’s update
can be adjusted (such as 1st-GOP, 2nd-GOP, 3rd-GOP) to
adapt to the scene change of different videos. At the beginning
of every segmentation interval, SCNet re-derives the object
information and re-propagates the mask with the STCN, which
is equivalent to updating the object information regularly to
guide the accurate segmentation of SVOS.

V. SEGMENTATION-ASSISTED MOTION COMPENSATION

As mentioned in Section IV, the reference frame can be seg-
mented with the same setup in the encoder and decoder. The
segmentation mask of the reference frame is generated when
the coding frame is reconstructed, and stored in buffer mem-
ory for segmentation-assisted inter prediction of subsequent
frames. With a proper indication, the object segmentation mask
of the reference block is translated to the coding block as
the arbitrary-shaped partition of motion-inconsistent regions.
In this section, we assume that the partition and the motion
information of different regions are obtained, and introduce
how to utilize the segmentation mask to assist the MC for
different motion-inconsistent regions (sub-regions) within the
block.

For different sub-regions, two MVs (MVprimary and
MVsecondary) are used to represent their motion and cor-
respond to two block-level reference blocks named primary
prediction and secondary prediction (Pprimary, Psecondary).
Considering the accurate representation of motion information,
we propose segmentation-assisted motion compensation (SA-
MC) to generate the prediction of different sub-regions within
a block, the process of SA-MC is shown in Fig. 4 . In
particular, the segmentation mask assists the two steps of MC,
including the integer and fractional parts.

A. Segmentation-Assisted Integer-Pixel Motion Compensation
In regular integer-pixel MC (IMC), the prediction can be

directly copied from the reference frame. In SAIP, if the
prediction of each sub-region is directly copied from different
reference blocks and joined into a block to generate the block-
level prediction, the prediction may result in serious bound-
ary artifacts, thus affecting prediction accuracy. Inspired by
overlapped block motion compensation [39], [40], we design
an overlapped region-based motion compensation (ORMC)
method, which uses the arbitrary-shaped (non-linear) partition
of motion area and multiple reference blocks to generate the
prediction without the region-level boundary artifacts.

On both sides of the non-linear partition line, the 2-pixel
range region is defined as the edge region. For the edge region
to be predicted, not only its own MV but also the MV of
the neighboring region can be used to derive the prediction
signal. Fig. 5 shows a set of ORMC examples. A blending
process is applied to the pixels around the non-linear partition
line by a distance-based adaptive weighted strategy. Pixels
are classified into three categories: one pixel away from the
partition line, two pixels away, and more than two pixels away.
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Fig. 5. An example of overlapped region-based motion compensation. The
red line is the partition line of motion-inconsistent regions.

Each category corresponds to a different weight for the fusion
of Pprimary and Psecondary in every pixel.

To classify the pixels around the non-linear partition line,
the segmentation mask and edge detection operator are com-
bined to achieve accurate pixel classification. We introduce
the Prewitt operator [41], [42] to classify the pixels of the
segmentation mask. First, the first-order differential-based
Prewitt operator is introduced to calculate the gradient between
the current pixel and adjacent pixels by

G0(i, j) = max
(
S0 �P0,S0 �P0

T
)

(2)

where S0 is a 3×3 matrix consisting of the pixel at the (i, j)
position in segmentation mask and its surrounding pixels, and
P0 is the Prewitt operator:

P0 =

[
−1 −1 −1
0 0 0
1 1 1

]
(3)

Then, according to the principle of the operator, the operator
is expanded to 5×5 and calculate the gradient of the current
pixel and the pixel at a distance of one pixel (G1(i, j)).

Finally, the category C is derived from the calculation
results of G0 and G1, by

Ci,j =

{
1 if |G0(i, j)| > 0

2 if |G0(i, j)| = 0 & |G1(i, j)| > 0

0 otherwise
(4)

With the pixel category C obtained, we allocate different
fusion weights for different pixel categories. Therefore, the
final prediction Pfinal can be generated according to the cat-

egory and the value of the segmentation mask, using different
weight values to fuse Pprimary and Psecondary:

Pfinal(i, j) =

{
w0Pprimary(i, j) + w1Psecondary(i, j) if Mi,j = 1

w1Pprimary(i, j) + w0Psecondary(i, j) if Mi,j = 0
(5)

where the values of w0 and w1 are set by different categories:{
w0 = 1

2
, w1 = 1

2
if Ci,j = 1

w0 = 3
4
, w1 = 1

4
if Ci,j = 2

w0 = 1, w1 = 0 if Ci,j = 0

(6)

B. Segmentation-Assisted Fractional-Pixel Motion Compensa-
tion

In regular block-based MC, due to the inherent spatial
discretization of digital video, block translation may not
happen to be aligned with pixels. Thus, retrieving a block
in the reference frames may not predict the coding block well
enough. In VVC, discrete cosine transform-based interpolation
filter (DCTIF) [43], [44] is utilized to generate the fractional-
pixel MC prediction (fractional MCP) from the integer-pixel
MCP and its adjacent reference pixels. In our case, due to the
different motions of sub-regions within a block, the block-
level fractional-pixel MC (FMC) method is mismatched for
region-level FMC. Fractional-pixel prediction is needed to
generate finely for each sub-region. Therefore, considering
the combination of sub-regional FMC with the principle of
DCTIF, we propose a two-step prediction fusion-based MC
process (TWO-STEP), including integer and fractional parts.
The key lies in that the integer-pixel prediction fusion is
performed in IMC to assist the DCTIF of subsequent FMC.
The process of fractional-pixel SA-MC is shown in Fig. 4 .

First, for the integer-pixel prediction fusion, the integer-
pixel MCP is generated from each sub-region’s integer-pixel
prediction in integer-pixel SA-MC (ORMC), and provides
the precise adjacent reference pixels for the interpolation of
edge-adjacent fractional pixels in the DCTIF of subsequent
FMC. Second, for different sub-region’s FMC, the integer-
pixel MCP and the fractional part of each sub-region’s MV are
fed into the DCTIF as the input to generate the fractional-pixel
prediction of each sub-region. Finally, with the two fractional-
pixel prediction blocks obtained, the fractional-pixel prediction
fusion is performed by the same strategy (ORMC) to extract
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Fig. 6. (i) Position of spatial and temporal merge candidates. (ii) An example of the process of SA-MVC for a coding block. For the pattern search module,
the white/black blocks in the corner represent the primary/secondary region; i indicates the pattern ID. (iii) All patterns of motion-inconsistent regions; (iv)
Candidate list derivation for secondary region; Top right note 1 indicates the pattern 1 as marked in (iii); Top right note 2 indicates the neighbor CUs as
marked in (i). Top right note 3 indicates zero motion vector (0, 0).

and fuse the fractional MCP of different sub-regions in a block
to generate the final fractional-pixel prediction.

VI. SEGMENTATION-ASSISTED MOTION VECTOR CODING

In regular inter prediction, block-based inter prediction is
widely adopted, and only one MV is used to describe the
motion in a coding block. It assumes that the motions within
a block tend to be uniform. In regard to complex motion fields,
it is difficult to follow the block-based inter mode. When the
partition becomes more complicated into more blocks to repre-
sent the accurate motion field, the partition and syntax signals
will increase the bits consumption. Meanwhile, the precise
block partition can only roughly align with natural objects of
arbitrary shape, and the real motion field is hard to capture.
Thus, flexible partitioning and efficient motion representation
are the keys to improving coding performance. Therefore, we
propose the segmentation-assisted motion vector coding (SA-
MVC) method to use the segmentation mask (object-aware
partition information) to guide more accurate motion analysis
for fine-grained region level, and further consider different
qualities of the potential MV candidates to code the MVs
of the different motion-inconsistent regions efficiently. The
process of SA-MVC is shown in Fig. 6.

In SAIP, the motion of each coding block is divided into
two parts (primary motion and secondary motion) to derive
the motion data, which corresponds to two MVs (MVprimary,
MVsecondary). One is coded by the index of the primary
candidate list (length: 71), the list includes regular merge
candidates (Merge) and merge with motion vector difference
(MMVD) candidates [5]. The other one is coded by the
index of the secondary candidate list (length: 7), the list is
established with the assistance of segmentation mask.

In the coding process, the primary candidate list is estab-
lished at first for the coding block, and each candidate can
provide a MV (MVprimary) for the current coding block’s
rough motion representation. Due to multiple motions in the
coding block, MVprimary can only consider describing a

part of the motion. To further describe the multiple motions,
the partition of motion area is needed. By the guidance of
MVprimary, the segmentation mask of the primary reference
block can be translated to the current coding block as the
partition of the motion area. From the mask, the coding
block can be partitioned into two motion-inconsistent regions
(primary region, secondary region). For the motion of the
primary region, it can be represented by MVprimary. In order
to efficiently represent the motion of other regions, we propose
a segmentation-assisted candidate derivation (SA-CD) strategy
for the MV candidate derivation of other parts.

The construction of the regular merge candidate list follows
the fixed predefined order to traverse the potential candi-
dates (B1→A1→B0→A0→B2→T→...) to fill the candidate
list. Figure 6 .(i) shows the position of spatial and temporal
candidates for the current coding unit (CU), which is used
to copy the motion information of the neighboring block for
reference. In SA-CD, the segmentation mask (object-aware
partition) is utilized as the criterion to perform motion analysis
for coding block and further adaptively select and rank the
high-probability candidates to construct the candidate list,
thereby considering different qualities of the potential MV
candidates. The example is shown in Fig. 6 .(ii). First, the
distribution pattern of the secondary region in the partition
of the coding block’s motion-inconsistent regions is searched.
The nearest four-pixel values near the corner are taken as
the classification rule. In that case, the four pixels in the
upper left and upper right corner of the segmentation mask
are all zero (black). It is considered that these corners of
the segmentation mask are in the secondary region. Similarly,
the four corners can be in the secondary or the primary
region, so the distribution of the motion-inconsistent regions
can be classified into 16 patterns, all patterns are shown
in Fig. 6 .(iii). Different patterns of distribution of motion-
inconsistent regions correspond to different candidate lists.
The secondary candidate list is also derived from the can-
didates in Fig. 6 .(i). The construction order is determined by
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Fig. 7. Illustration of the proposed object segmentation-assisted inter prediction (SAIP) framework with segmentation-assisted rate-distortion optimization
(SA-RDO) process (uni-directional case) from the perspective of encoding. Boxes represent the sub-modules of SAIP. Arrows indicate the data flow direction.

the distribution pattern of secondary region, which assumes
that the motion information of neighboring blocks closer to
the secondary region is more likely to match the motion
information of secondary region. Therefore, according to the
distribution pattern (blue dotted box) of Fig. 6 .(ii), the order
can be determined as B1→B2→B0→(0,0)→A0→A1→T. The
candidate list of all distribution patterns is also shown in
Fig. 6 .(iv).

The motion information of the coding block also affects the
coding of the subsequent coding block’s ME/MC. In VVC, the
motion information is stored in the cache with 4×4 unit. The
stored data is used for the MV prediction of the subsequent
coding blocks. To assist the MVC of the subsequent coding
blocks, the motion information storage of SAIP is adaptively
stored based on the partition of the motion area. The value of
the segmentation mask determines the storage type of motion
information (primary or secondary) for each 4×4 unit.

VII. SEGMENTATION-ASSISTED RATE-DISTORTION
OPTIMIZATION FOR MOTION ESTIMATION

AND PARTITION ESTIMATION

For the previous inter prediction methods of VVC, the rate-
distortion optimization (RDO) for block-level partition and
ME are independent of each other. In our proposed method,
due to the region-level partition is introduced to assist the fine-
grained inter prediction, ME for different motion-inconsistent
regions and region-level partition estimation for coding block
are all considered in the RDO process.

For the ME of different motion-inconsistent regions, the
accuracy of motion representation depends on whether the par-
tition (segmentation mask) of the motion area can approximate
the actual motion field in the coding block. In the previous
related work (GEO [11], PCS-16 [14], TIP-19 [13]), template-
based or hypothesis-based partition derivation methods are
utilized, the fixed search range of partition varieties and

individual RDO process (for ME and partition search) limit
the partition search space of coding block and the accuracy
of MVs, thereby further impacting on the prediction quality.
To solve these limits, segmentation-assisted rate-distortion
optimization (SA-RDO) is applied to the proposed SAIP
framework. In Fig. 7 , the object segmentation-assisted inter
prediction framework with proposed SA-RDO (uni-directional
case) is shown from the perspective of encoding. The motion
candidates of MVprimary imply various partition candidates
are used to suppose the motion area partition of current coding
block (partition information does not need to be explicitly
signaled). And the partition estimation and the ME of primary
motion and secondary motion are joint to search the best
combination in the whole RDO process. Here we detail
the SA-RDO from the perspective of uni-directional and bi-
directional prediction.

A. Rate-Distortion Optimization for Uni-directional Predic-
tion

In codec, the SAIP mode is added as a regular prediction
mode in the mode decision list for each coding unit. For a
coding block (CB) to try the uni-directional SAIP mode, first,
the uni-directional primary candidate list is established. To
provide the various partition candidates for accurate partition
estimation, the primary candidate list is designed to be longer
than the secondary candidate list. Each primary candidate
contains MVprimary,α, Refprimary,α and PartitionCB,α with
index α ∈ {0...70}. Meanwhile, each primary candidate
indicates a different reference block, and the different segmen-
tation mask (representing the different regions by 1/0-value)
can be translated to suppose the different motion area parti-
tion of current coding block (PartitionCB,α). For the motion
representation of each MVprimary,α in the coding block, it
is hard to determine whether the MVprimary,α represents the
1-value region or the 0-value region’s motion. Therefore, the
reverse index j ∈ {0, 1} is added to identify the distribution
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of primary region in the segmentation mask. When the reverse
index is 0, the 1-value indicates the primary region and the
0-value indicates the other parts. When the reverse index
is 1, the opposite is true. Once the partition and primary
region are fixed, the other region corresponds to the secondary
region. Second, the uni-directional secondary candidate list
is constructed according to SA-CD and PartitionCB,α, the
MVsecondary,β and Refsecondary,β with index β ∈ {0 . . . 6}
can be selected to represent the motion of other parts in the
coding block.

With the uni-directional primary and secondary candidates
constructed, the best combination of these candidates is deter-
mined by two stages.

1) Stage 1: The combined uni-directional primary and
secondary candidates are used to conduct the SA-MC to
generate the prediction of the coding block. The sum of the
absolute transformed differences (SATD) of luma between the
prediction and the original signal is computed as SATDα,j,β .
The rate-distortion (RD) cost Jα,j,β for α, j and β can be
sorted by

Jα,j,β = SATDα,j,β + λ(Rα +Rj +Rβ), (7)

where Rα, Rj and Rβ denote the estimated rates for the pri-
mary candidate index, reverse index, and secondary candidate
index, respectively.

2) Stage 2: From stage 1, the best four combined candi-
dates further apply the residual transform coding and CABAC-
based rate estimation to calculate the accurate rate cost Rα,j,β .
The distortion over three components between these candidates
and the original signal is measured by the sum of squared
differences (SSD) as SSDα,j,β . Finally, the optimal α, j, and
β can be selected by

Jα,j,β = SSDα,j,β + λRα,j,β . (8)

For the uni-directional prediction process of each coding
block, 71 (the length of primary candidate list) × 7 (the length
of secondary candidate list) × 2 (reverse test) = 994 times are
calculated and compared in Stage 1 of SA-RDO, and 4 (the
length of combined candidate list) × 2 (residual coding, use
or skip) = 8 times are calculated and compared in Stage 2 of
SA-RDO, 1002 times maximum calculation in total.

B. Rate-Distortion Optimization for Bi-directional Prediction

In the bi-directional case of SA-RDO, each bi-directional
primary candidate contains MVprimary,α,f , Refprimary,α,f ,
PartitionCB,α,f , and MVprimary,α,b, Refprimary,α,b,
PartitionCB,α,b with index α ∈ {0...70} . The f indicates
the forward reference direction, and b indicates the backward
reference direction. For different reference directions,
the motion information of the corresponding reference
direction of primary candidate indicates a reference
block (retrieved by MVprimary,α,f /Refprimary,α,f or
MVprimary,α,b/Refprimary,α,b), and a segmentation mask
(PartitionCB,α,f or PartitionCB,α,b) can be translated to
suppose the different motion area partition of current
coding block in the corresponding reference direction. With
the assistance of partition candidate (PartitionCB,α,f and

MMVD

Subblock merge

GPMCIIP

subblock_merge_flag

regular_merge_flag

Regular Merge

ciip_merge_flagmmvd_merge_flag

MMVD

Subblock merge

saip_flagCIIP
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regular_merge_flag

Regular Merge

ciip_merge_flagmmvd_merge_flag

saip_merge_flag GPM

SAIP Merge SAIP MMVD

Fig. 8. Entropy coding syntax tree; the left is the original, the right is after
adding the SAIP; signaled syntax elements are bold; prediction modes are
shown as leaf nodes.

TABLE I
SAIP SYNTAX ELEMENTS

Syntax Descriptor

merge data() {
. . .

saip flag ae(v)
if( saip flag ){
saip merge flag ae(v)

if( saip merge flag ){
saip merge idx ae(v)

}
else{

saip mmvd cand idx ae(v)
saip mmvd distance idx ae(v)
saip mmvd direction idx ae(v)
}
saip back idx ae(v)
saip reverse idx ae(v)

}
. . .
}

PartitionCB,α,b) in the corresponding reference direction, the
subsequent prediction process of each reference direction
is the same as the uni-directional case of SA-RDO, and
each bi-directional prediction candidate is obtained by the
weighted average of different reference direction’s prediction.

C. Complexity Optimization

To reduce the complexity of SA-RDO, we optimize the en-
coder algorithm in two aspects, including early termination and
parameter pre-calculation. (1) Early Termination: The early
termination is integrated into the two stages of SA-RDO to
reduce the more attempts for the decision of different region’s
motion data. In Stage 1, the minimum cost of each combined
candidate is recorded for subsequent candidate’s early termi-
nation. For each primary candidate, after the rank of SA-CD,
the highest-probability (first-order) secondary candidate with
the primary candidate is tested and compared with the previous
minimum cost. If higher, the attempt of subsequent secondary
candidates is terminated. In Stage 2, for the best four combined
candidates of Stage 1, if the cost of the first combined candi-
date is less than 0.9× cost of the third combined candidate,
the attempt of the last two combined candidates is terminated
in Stage 2. (2) Parameter Pre-Calculation: To prevent the
repeated calculation of weighted coefficient in SA-MC, after
the reconstructed frame’s segmentation mask is generated, the
coefficient map is calculated in advance for subsequent frames.
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TABLE II
BD-RATE RESULTS OF OUR PROPOSED SAIP METHOD COMPARED TO VTM-12.0 ON CTC TEST SEQUENCES

Class Sequence Low-delay P (%) Low-delay B (%) Random Access (%)
Name Y U V Ratio Y U V Ratio Y U V Ratio

ClassA1
(3840x2160)

Tango2 - - - - - - - - -0.21% 0.21% -0.11% 1.19%
FoodMarket4 - - - - - - - - -0.25% -0.25% -0.20% 1.63%

Campfire - - - - - - - - -0.16% 0.02% -0.12% 1.52%
Average - - - - - - - - -0.20% -0.01% -0.14% 1.45%

ClassA2
(3840x2160)

CatRobot1 - - - - - - - - -0.69% -0.01% -0.37% 2.12%
DaylightRoad2 - - - - - - - - -0.21% -0.37% -0.38% 1.22%
ParkRunning3 - - - - - - - - -0.06% -0.01% 0.03% 0.72%

Average - - - - - - - - -0.32% -0.13% -0.24% 1.35%

ClassB
(1920x1080)

MarketPlace -0.43% 0.31% -0.62% 2.89% -0.46% -0.78% -0.99% 2.78% -0.28% -0.13% -0.07% 1.36%
RitualDance -0.23% -0.35% -0.48% 2.15% -0.28% 0.42% 0.17% 2.27% -0.18% 0.27% -0.12% 1.21%

Cactus -0.28% -0.47% -0.38% 2.34% -0.28% -0.24% -0.19% 2.37% -0.30% 0.33% -0.40% 1.58%
BasketballDrive -0.29% -0.43% -0.66% 2.52% -0.25% -0.28% -0.33% 1.69% -0.20% 0.75% -0.21% 1.45%

BQTerrace -0.03% -0.09% -0.11% 0.73% -0.19% 0.47% 0.49% 1.68% -0.34% -0.19% -0.40% 1.11%
Average -0.25% -0.21% -0.45% 2.13% -0.30% -0.08% -0.17% 2.16% -0.26% 0.21% -0.24% 1.34%

ClassC
(832x480)

BasketballDrill -1.83% -1.03% -1.83% 10.73% -1.14% -0.74% -1.00% 7.59% -0.79% -0.08% -0.41% 4.45%
BQMall -1.98% -2.84% -2.41% 10.39% -0.84% -1.07% -0.63% 6.54% -0.66% -1.08% -0.70% 4.85%

PartyScene -0.27% -0.61% -1.03% 2.92% -0.17% -0.36% -0.16% 2.67% -0.17% -0.27% 0.03% 2.29%
RaceHorsesC -0.95% -1.23% -0.39% 5.75% -0.23% -0.13% 0.30% 3.55% -0.37% -0.40% -0.06% 2.72%

Average -1.26% -1.43% -1.41% 7.45% -0.60% -0.58% -0.37% 5.09% -0.50% -0.46% -0.29% 3.58%

ClassE
(1280x720)

FourPeople -0.93% -0.64% -0.17% 3.56% -0.46% 0.29% -0.36% 2.47% -0.41% -0.35% -0.21% 1.37%
Johnny -1.89% -1.29% -1.30% 5.58% -1.12% -2.02% 0.46% 3.54% -0.67% -0.25% -0.34% 2.30%

KristenAndSara -0.68% -1.63% 0.02% 3.35% -0.38% -0.80% 0.66% 2.19% -0.48% -0.77% -0.18% 1.36%
Average -1.17% -1.19% -0.48% 4.16% -0.66% -0.84% 0.25% 2.73% -0.52% -0.46% -0.24% 1.68%

Overall -0.82% -0.86% -0.78% 4.58% -0.49% -0.45% -0.13% 3.33% -0.37% -0.14% -0.23% 1.88%

ClassD
(416x240)

BasketballPass -0.61% -0.38% -1.17% 8.58% -0.48% -0.97% -0.74% 5.63% -0.44% 0.55% -0.21% 2.78%
BQSquare -0.78% -2.28% 3.65% 5.82% -0.42% -1.73% 1.76% 4.13% -0.53% -0.60% -0.37% 2.68%

BlowingBubbles -1.02% -1.17% -1.98% 5.85% -0.63% -0.16% 0.39% 4.41% -0.50% -0.81% -1.06% 3.40%
RaceHorses -0.83% -0.21% -0.90% 6.28% -0.10% 0.88% 0.15% 3.68% -0.34% 0.94% 0.49% 3.03%

Average -0.81% -1.01% -0.10% 6.63% -0.41% -0.49% 0.39% 4.46% -0.45% 0.02% -0.29% 2.97%

VIII. SYNTAX DESIGN

Syntax elements of SAIP are coded into the bitstream
using entropy coding. In the high-level syntax (HLS), two
SAIP enabling flags (SAIP Merge, SAIP MMVD) and the
maximum candidate number of the secondary candidate list
are coded in the sequence parameter set. The enabling flags
are coded with fixed-length code, and the maximum candidate
number is coded with the 0-th order exponential-Golomb code.

At the coding unit level, the SAIP syntax elements are
signaled inside the merge data syntax. Figure 8 shows the
changes in the syntax tree of merge data before and after
adding SAIP syntax elements. To minimize the impact of
the newly increased syntax elements on coding the syntax
of other modes, the original syntax tree of merge data has
been redesigned. In the new syntax elements tree, saip flag is
signaled to indicate whether it is in SAIP mode or GPM (GEO)
mode, and saip merge flag is signaled to indicate whether it
is in SAIP-Merge mode or SAIP-MMVD mode.

Table I is the syntax elements table for SAIP. It contains
four parts, including the syntax elements of the primary re-
gion (Merge: saip merge idx, MMVD: saip mmvd cand idx,
saip mmvd distance idx and saip mmvd direction idx), sec-
ondary region (saip back idx), mode flag (saip flag and
saip merge flag), and the reverse index (saip reverse idx).
These elements are coded by using the context-based adaptive
binary arithmetic coding (CABAC) engine. To code the newly

increased syntax elements efficiently, the mode flag, reverse
index, and the syntax elements of the secondary region are
coded by using a new context model.

IX. EXPERIMENTS

A. Experimental Settings

1) Learned Segmentation Inference: For image instance
segmentation, following [31], we use the pre-trained SCNet
model and infer the model on the MMDetection platform [45].
During inference, object proposals are progressively refined by
box branches at different stages. The final classification score
is obtained from the scores of multiple classifiers. To exclude
object classification error, only objects whose classification
score exceeds the threshold T ∈ (0, 1) can be segmented. In
our experiments, T is set to 0.3, 0.6, and 0.9. For video object
segmentation, following [37], the STCN adopts the inference
code and pre-trained model 1 , and follows the space-time
memory networks of the STM [36], which stores the previous
frames and masks in the memory bank. When inferring the
mask of the current frame, five frames are selected from the
memory bank and input with the current frame into the STCN.

2) Evaluation Configurations: To evaluate the performance
of SAIP in VVC, SAIP is implemented into the VVC reference

1https://github.com/hkchengrex/STCN

https://github.com/hkchengrex/STCN
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TABLE III
TIME COMPLEXITY OF OUR METHOD COMPARED TO VTM ANCHOR

Class
Low-delay P Low-delay B Random Access

EncT DecT EncT DecT EncT DecT

A - - - - 183% 116%

B 179% 111% 171% 112% 180% 112%

C 159% 109% 147% 113% 154% 115%

E 178% 113% 148% 120% 179% 118%

Overall 172% 111% 155% 115% 174% 115%

D 135% 108% 123% 119% 116% 117%

software VTM-12.0 2. Three main profile configurations (Low-
delay P (LDP), Low-delay B (LDB), Random Access (RA))
and test sequences specified in [46] are used as the test
conditions. Following the common test conditions (CTC) [46],
four quantization parameters are tested: 22, 27, 32 and 37.
For different quantization parameters, different segmentation
configurations of the SCNet and STCN are chosen. For the
measure of coding performance, the Bjontegaard Delta bit-rate
(BD-rate) [47] is used as the objective metric to evaluate it.
To further measure the characteristic of the proposed method
on different sequences, the usage ratio (Ratio) is used to
validate the efficiency of mode selection, which is calculated
by, Ratio = Ntest/Ntotal, where Ntest indicates the number
of coding units coded by the proposed method in P/B-frames,
and Ntotal indicates the total number of coding units in P/B-
frames of the test sequences.

B. Performance

In this subsection, we show the overall performance of
the proposed object segmentation-assisted inter prediction.
First, we show the coding performance and encoding/decoding
complexity of the proposed SAIP implemented into the VVC
reference software VTM-12.0 under CTC [46]. Second, we
compare SAIP with previous related methods to verify its su-
perior performance. Finally, we test SAIP on the test sequence
of specific scenes to further demonstrate its effectiveness.

1) Overall Performance Under Common Test Conditions:
The R-D performance of the entire segmentation-assisted inter
prediction framework on the VVC common test sequences
is illustrated in Table II . Y, U, and V represent the R-D
performance gain of the three channels of YUV. We can
see that our proposed SAIP can achieve on average, 0.82%,
0.49% and 0.37% (marked by font bold), and achieve up
to 1.98%, 1.14% and 0.79% (marked by underline) BD-rate
reduction (Y component) with high usage ratio on VTM-12.0
for all sequences under the LDP, LDB, and RA configurations.
The experimental results show that the proposed framework
performs better for sequences with more moving objects
and complex motion fields, such as BasketballDrill, BQMall,
CatRobot, and Marketplace.

In VVC reference software (VTM-12.0), the technology
of inter prediction most relevant to SAIP is the geometric
partitioning mode (GEO) [11]. Both ours and GEO aim to

2https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware VTM

TABLE IV
COMPARISONS WITH SOME ENHANCED GEOMETRIC-BASED

PARTITIONING METHODS UNDER LOW-DELAY B AND RANDOM ACCESS
CONFIGURATIONS. NOTE THAT DIFFERENT METHODS ARE COMPARED TO
DIFFERENT ANCHORS (THE ANCHOR IS SHOWN IN PARENTHESES, SUCH

AS VTM-8.0 FOR TIP-21, VTM-12.0 FOR SAIP).

Class
Low-delay B Random Access

TIP-211

(VTM-8.0)
VTM-12.0
(VTM-8.0)

SAIP2

(VTM-12.0)
TIP-211

(VTM-8.0)
VTM-12.0
(VTM-8.0)

SAIP2

(VTM-12.0)
A1 - - - -0.20% -5.69% -0.20%

A2 - - - -0.21% -12.08% -0.32%

B -0.31% -1.17% -0.30% -0.19% -6.96% -0.26%

C -0.61% -1.41% -0.60% -0.32% -3.22% -0.50%

E -0.88% -1.29% -0.66% - -8.35% -0.52%

Overall -0.55% -1.28% -0.49% -0.23% -7.00% -0.37%
D - -1.02% -0.41% - -0.83% -0.45%

1 These results are cited from [20]. Only partial sequences were reported.
2 The performance of SAIP on top of VTM-12.0.

achieve a flexible description of the motion field and match
the appropriate prediction for different regions in a block.
In Table II , under the LDB and RA configurations, GEO
is enabled in the anchor by default. In the comparison with
anchor, SAIP achieves good performance with GEO enabled.
It can be concluded that SAIP can efficiently deal with some
complex motion scenarios that GEO is difficult to address.

2) Complexity: The encoding/decoding time complexity of
our proposed method is illustrated in Table III . EncT and DecT
represent the encoding/decoding time with the inference time
of segmentation network, the network is inferred in parallel
with the syntax parsing. The codec time is tested on CPU, and
the model is Intel Core i7-11700 @2.50GHz. The inference
time of network is tested on GPU, the models are aligned
with the [31], [37], and the computational complexity is 119
kMAC/pixel.

Compared with the anchor, under LDP, LDB and RA, for
the decoding time, our proposed method does not obviously
increase the time complexity in the decoding process. The
slight increase in DecT is mainly due to the inference time of
the segmentation network. For the encoding time, the increase
in EncT is mainly due to the SA-RDO for the partition
estimation of coding block and ME of primary and secondary
regions to search accurate motion area partition and the MVs
of each region.

3) Comparisons with State-of-the-Art Methods: Table V
and VI show the experimental data comparing our proposed
SAIP with the previous related work on segmentation-based
partition methods [13] and [14], under LDP, LDB and RA
configurations ( [13] did not report RA configuration, [14]
did not report LDP configuration). These related methods use
different anchors. Specifically, [13] and [14] use HM-14.0
and VTM-1.0 as the anchor, respectively. We directly cite the
results reported in [13] and [14], since our reimplementation
may not work as well as the authors’. HM-14.0 [48] and VTM-
1.0 [49] do not contain some new technical tools in the latest
version of VVC, which have a large performance gap with
VTM-12.0. To make a fair comparison with related work,
we test SAIP in a simplified VTM-12.0 with some coding
tools turned off, and compare it with [13] [14] on HEVC and
VVC test sequences. Note that the turned-off coding tools in

https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM
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TABLE V
COMPARISONS WITH THE OTHER STATE-OF-THE-ART METHODS UNDER LOW-DELAY B CONFIGURATION. NOTE THAT DIFFERENT METHODS ARE

COMPARED TO DIFFERENT ANCHORS (THE ANCHOR IS SHOWN IN PARENTHESES, SUCH AS HM-14.0 FOR PCS-16, VTM-1.0 FOR TIP-19).

Low-delay B Configuration (%)

Sequence
PCS-161

(HM-14.0)
TIP-192

(VTM-1.0)
Simplified VTM-12.03

(HM-14.0)
Simplified VTM-12.03

(VTM-1.0)
SAIP4

(Simplified VTM-12.03)
Name Y Y U V Y U V Y U V Y U V

MarketPlace - - - - -16.81% -12.53% -20.41% -4.86% 20.24% 22.04% -2.38% -2.09% -2.38%
RitualDance - - - - -25.05% -20.87% -20.66% -8.90% 17.14% 16.08% -2.15% -1.98% -1.91%

Cactus - -1.00% -0.90% -1.00% -20.36% -6.45% -6.35% -9.88% 22.29% 22.37% -0.80% -0.77% -0.86%
BasketballDrive -0.08% -0.70% -0.80% -1.10% -24.02% -21.09% -21.25% -9.47% 27.71% 23.75% -2.20% -3.00% -2.88%

BQTerrace - -1.60% -2.00% -1.70% -16.10% -15.34% -28.19% -8.08% 18.61% 11.56% -1.48% -1.01% -0.94%
Kimono -0.14% -0.90% -1.00% -1.40% -15.01% 4.40% 0.68% -6.15% 20.14% 20.14% -1.17% -1.00% -0.87%

ParkScene - -0.60% -0.40% -0.70% -16.60% -3.55% -4.14% -6.89% 20.26% 22.02% -0.23% -0.63% -0.55%
BasketballDrill - -1.30% -1.50% -1.30% -29.14% -15.11% -14.63% -19.76% 9.37% 10.45% -4.34% -4.27% -4.91%

BQMall - -1.50% -1.10% -1.00% -22.74% -14.37% -13.82% -12.03% 14.86% 14.43% -4.47% -5.91% -5.14%
PartyScene - -1.80% -1.40% -1.10% -16.82% 0.69% -1.07% -9.07% 21.47% 22.33% -1.16% -1.10% -1.37%

RaceHorsesC -0.95% -0.60% -0.90% -0.80% -12.52% 10.91% 10.28% -5.06% 30.48% 34.81% -2.21% -2.97% -3.63%
BasketballPass - -0.80% -0.80% -1.00% -17.88% -10.36% -6.16% -7.69% 23.35% 24.07% -2.41% -3.60% -4.02%

BQSquare - -1.90% -1.60% -2.00% -13.55% -10.62% -12.38% -8.34% 7.68% 5.87% -1.26% 0.17% 1.14%
BlowingBubbles -0.30% -1.70% -1.40% -1.60% -12.62% 6.62% 2.90% -5.55% 24.08% 24.18% -2.18% -2.35% -1.14%

RaceHorses - -1.00% -1.20% -1.00% -13.47% 7.69% 7.84% -5.10% 29.82% 29.66% -2.11% -2.81% -2.30%
FourPeople - -0.70% -0.60% -1.20% -25.13% -28.39% -29.28% -10.46% 0.92% -0.80% -2.23% -1.48% -1.86%

Johnny - -0.90% -1.00% -1.20% -25.81% -30.38% -34.35% -10.25% 9.35% 6.11% -3.80% -3.04% -2.73%
KristenAndSara - -1.10% -1.30% -0.90% -23.97% -26.32% -28.35% -8.89% 6.64% 5.79% -1.53% -1.07% 2.21%

Average -0.37% -1.13% -1.12% -1.13% -20.72% -12.74% -15.11% -8.69% 18.02% 17.49% -2.12% -2.16% -1.90%
1 These results are cited from [13]. Only Y-channel BD-rate of partial sequences was reported.
2 These results are cited from [14]. Only partial sequences were reported.
3 VTM-12.0 with several coding tools turned off (MTS, SBT, LFNST, ISP, MMVD, Affine, SbTMVP, LMChroma, DepQuant, IMV, ALF, CCALF, BCW, BcwFast, BIO, CIIP,

Geo, AffineAmvr, LMCS, MRL, MIP, DMVR, SMVD, JointCbCr, PROF, ChromaTS). Note that the turned-off coding tools are all not supported in HM-14.0 [48] and VTM-1.0
[49], and do not affect the inter technology of HM-14.0 and VTM-1.0.

4 The performance of SAIP on top of Simplified VTM-12.0.

TABLE VI
COMPARISONS WITH THE OTHER STATE-OF-THE-ART METHODS UNDER LOW-DELAY P AND RANDOM ACCESS CONFIGURATIONS. NOTE THAT

DIFFERENT METHODS ARE COMPARED TO DIFFERENT ANCHORS (THE ANCHOR IS SHOWN IN PARENTHESES,
SUCH AS HM-14.0 FOR PCS-16, VTM-1.0 FOR TIP-19).

Low-delay P Configuration (%) Random Access Configuration (%)

Sequence
PCS-161

(HM-14.0)

Simplified
VTM-12.03

(HM-14.0)

SAIP4

(Simplified
VTM-12.03)

TIP-192

(VTM-1.0)
Simplified VTM-12.03

(VTM-1.0)
SAIP4

(Simplified VTM-12.03)

Name Y Y Y Y U V Y U V Y U V
MarketPlace - -18.51% -2.50% - - - -13.80% 0.31% 0.12% -4.25% -3.40% -3.37%
RitualDance - -25.78% -2.28% - - - -7.38% 21.24% 21.23% -2.23% -2.13% -2.00%

Cactus - -21.26% -1.24% -0.90% -0.70% -0.90% -15.97% 1.45% 4.13% -4.39% -4.08% -4.00%
BasketballDrive -0.18% -25.95% -1.98% -0.90% -0.80% -1.10% -13.14% 13.33% 11.14% -3.17% -3.29% -2.89%

BQTerrace - -23.45% -0.78% -1.50% -1.20% -1.30% -23.84% -8.67% -10.70% -2.13% -1.62% -1.55%
Kimono +0.04% -19.11% -0.82% -1.10% -1.30% -0.80% -7.64% 14.96% 13.62% -2.23% -2.78% -2.32%

ParkScene - -16.45% -0.57% -1.10% -1.20% -0.70% -11.18% 7.55% 9.02% -1.71% -1.52% -1.21%
BasketballDrill - -31.04% -3.00% -1.40% -2.10% -1.80% -12.05% 12.68% 10.29% -2.70% -2.99% -3.24%

BQMall - -24.41% -3.69% -1.60% -1.40% -1.60% -10.11% 13.54% 13.47% -4.38% -4.87% -5.01%
PartyScene - -20.51% -1.50% -1.50% -1.00% -0.70% -5.46% 17.11% 17.49% -1.68% -1.94% -1.93%

RaceHorsesC -1.05% -14.49% -2.60% -0.70% -0.50% -0.40% -10.85% 18.34% 19.93% -2.58% -4.09% -4.42%
BasketballPass - -17.59% -2.79% -0.90% -1.10% -1.00% -8.09% 18.51% 17.10% -1.66% -2.28% -2.27%

BQSquare - -23.14% -2.64% -1.60% -2.40% -2.20% -4.37% 5.95% 7.04% -2.17% -2.07% -1.50%
BlowingBubbles -0.17% -14.15% -2.27% -1.80% -1.90% -2.10% -7.52% 15.82% 17.49% -2.43% -2.00% -2.66%

RaceHorses - -14.06% -2.99% -0.80% -0.70% -0.70% -6.52% 20.78% 18.72% -2.05% -3.04% -2.75%
FourPeople - -26.19% -1.26% -0.80% -0.60% -0.90% -14.32% -6.64% -8.85% -1.82% -1.37% -1.29%

Johnny - -28.65% -3.38% -0.80% -0.50% -0.20% -16.01% -5.92% -10.13% -3.41% -2.80% -3.03%
KristenAndSara - -24.97% -1.62% -1.00% -0.70% -0.90% -14.19% -4.63% -5.28% -2.07% -1.63% -1.56%

Tango2 - - - -0.80% -1.10% -1.20% -11.59% 4.54% 3.47% -2.90% -3.32% -2.85%
Drums100 - - - -1.40% -1.80% -1.60% -17.93% -2.46% -1.84% -1.78% -1.93% -1.23%
Campfire - - - -1.70% -2.50% -3.30% -20.34% 9.60% 8.37% -0.72% -0.47% -0.88%

ToddlerFountain2 - - - -0.80% -0.90% -1.30% -6.43% 48.16% 38.69% -0.23% -1.59% -0.57%
TrafficFlow - - - -0.90% -1.10% -0.90% -14.30% 2.16% 2.74% -1.44% -1.35% -1.29%

DaylightRoad2 - - - -1.10% -1.00% -1.10% -17.23% -8.60% -7.49% -3.36% -2.47% -2.54%
FoodMarket4 - - - - - - -9.80% 10.05% 11.89% -1.83% -1.81% -1.21%

CatRobot - - - - - - -15.13% 0.94% 1.21% -4.24% -5.45% -5.28%
ParkRunning3 - - - - - - -17.23% 9.61% 12.50% -3.92% -4.07% -4.32%

Average -0.34% -22.14% -2.10% -1.14% -1.20% -1.22% -12.31% 8.51% 7.98% -2.50% -2.61% -2.49%

Note: The indication of table notes 1, 2, 3, 4 is the same as in Table V .
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TABLE VII
BD-RATE RESULTS OF OUR PROPOSED SAIP COMPARED TO VTM-12.0 ON SPECIFIC SCENES.

Sequence Resolution Low-Delay P (%) Low-Delay B (%) Random Access (%)
Y U V Y U V Y U V

Carphone QCIF -1.67% -0.09% 2.57% -1.05% -1.85% 0.63% -0.80% -1.33% -0.26%
Grandma QCIF -1.26% -1.91% -0.72% -1.27% -0.90% -1.41% -0.18% -0.56% -0.08%
Deadline CIF -0.92% -0.81% -1.89% -0.81% -0.44% 0.81% -0.67% -0.63% -1.19%

Akiyo CIF -0.69% 0.05% -0.50% -0.86% -1.46% -1.02% -0.01% 0.24% 0.41%
Silent CIF -2.90% -4.03% -2.78% -1.37% -1.26% -0.62% -1.02% -0.45% -0.57%

Bowing CIF -1.71% -3.15% -1.58% -1.08% -0.48% -1.40% -0.72% -0.37% -0.69%
Football CIF -0.71% 1.39% -2.06% -0.70% -1.24% 0.38% -0.63% 0.83% -0.47%
Foreman CIF -0.85% 0.60% -2.98% -0.52% -1.96% 1.11% -0.38% -0.38% -0.80%
Vidyo1 720P -0.75% -0.19% -1.06% -0.81% 0.16% -0.39% -0.58% -0.75% -0.51%
Vidyo3 720P -1.27% -1.80% -0.88% -0.80% -1.22% -0.29% -0.63% -0.45% -0.33%
Vidyo4 720P -0.84% -0.07% 0.65% -0.55% -0.59% -0.99% -0.43% -0.37% -0.19%
Crew 720P -0.73% 1.25% -1.20% -0.59% -1.48% -0.98% -0.52% -1.82% 0.51%
Aspen 1080P -0.51% -0.20% -0.37% -0.42% -0.53% 0.12% -0.36% -0.17% 0.08%

Red kayak 1080P -0.50% -0.30% 0.86% -0.51% -1.86% 0.61% -0.47% 0.20% -1.02%
Sunflower 1080P -0.60% -0.92% -0.86% -0.64% -0.72% -0.42% -0.49% 0.01% -0.25%

FoodMarket2 4K -0.45% -0.63% -0.21% -0.47% -1.13% 0.36% -0.51% -0.32% 0.24%
BoxingPractice 4K -1.22% -1.72% -0.70% -0.90% -1.67% -1.15% -0.78% -1.23% -0.55%

Crosswalk 4K -0.67% 0.18% -0.85% -0.63% -1.86% -0.35% -0.31% -0.70% -0.71%
Narrator 4K -1.31% -1.68% -2.15% -1.08% -1.66% -1.02% -0.34% 0.18% 0.10%

SquareAndTimelapse 4K -0.65% -0.03% -0.96% -0.55% 0.07% -0.54% -0.50% -0.68% -0.47%
Overall - -1.01% -0.70% -0.88% -0.78% -1.10% -0.33% -0.52% -0.44% -0.34%

simplified VTM-12.0 are all not supported in HM-14.0 [48]
and VTM-1.0 [49]. (The number of coded frames of these
methods in Table V and VI follows the number of coded
frames specified in the Common Test Condition of HEVC [50]
and VVC [46].) From Table V and VI , it is observed that the
proposed SAIP achieves a better relative BD-rate reduction
on higher version than the other methods on low versions,
which demonstrates the superior performance of the proposed
method.

In terms of performance comparison with previous
segmentation-based partition methods [13] [14], the bitrate
savings of the proposed method mainly come from the fol-
lowing four aspects: (1) We design a complete segmentation-
assisted inter prediction framework, which sufficiently ex-
plores the assistance effect of segmentation in each sub-
modules of inter prediction. In addition, the flexible and
accurate motion area partition greatly improves the efficiency
of inter prediction for motion-inconsistent regions. (2) For the
MC of multiple motion-inconsistent regions in a block, the
segmentation-assisted process can achieve higher prediction
accuracy. It leverages the assistance of segmentation for the
multi-stage MC. (3) For the MVC of different regions, the
proposed SA-CD fully utilizes the segmentation mask to
provide suitable prediction candidates efficiently and further
reduces the transmission of motion data. (4) For the ME of
different regions, the motion information candidates implicitly
indicate partition candidates for the partition estimation of
coding block, which provide various partition candidates to
suppose the actual motion situation and jointly consider the
partition estimation and ME in the RDO process to estimate
the partition and MVs accurately.

In addition, we also compare our proposed method with
some enhanced geometric-based partitioning methods [20],

under LDB and RA configurations. The comparison result is
shown in Table IV . Specifically, [20] uses VTM-8.0 as the
anchor, and we directly cite the results reported in [20] (did not
report LDP configuration). From Table IV , it is observed that
the proposed SAIP achieves a good relative BD-rate reduction
on the VTM higher version than the other enhanced geometric-
based partitioning methods on the VTM low version, which
further verifies the efficiency of the proposed method.

4) On Specific Scenes: According to the performance of
SAIP under CTC and the comparison with other methods,
the proposed object-aware prediction framework is beneficial
to the scene with moving objects and complex motion fields
(such as the walkers of BQMall shown in Fig . 9 and the
athletes of BasketballDrill), and achieves high performance
on these scenes. To further verify the characteristics and
advantages of SAIP, we test SAIP on some selected test
sequences of specific scenes (diverse scenes, multiple moving
objects, complex motions) from previous standards’ CTC [1],
[7] and popular datasets [51]. Table VII shows the performance
of partial sequences on these specific scenes. We can see that
our proposed SAIP can achieve up to 2.90%, 1.37%, 1.02%,
and on average 1.01%, 0.78%, 0.52% BD-rate reduction
(Y component) on VTM-12.0. The results demonstrate the
SAIP can achieve accurate object-aware prediction on specific
scenes with more moving objects, and further improve the
flexibility of motion modeling in VVC.

C. Performance Analysis
In this subsection, we analyze the performance of SAIP

through the effectiveness of core modules and the mode
selection results of SAIP in detail.

1) Ablation Study: To demonstrate the contributions of
two core modules in our scheme, we conduct the ablation
experiments on proposed SA-MC and SA-MVC.
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TABLE VIII
ABLATION STUDY ON SA-MC AND SA-MVC BASED ON VTM-12.0

Low-delay P Configuration (%)

Class ONE-STEP SA-MC TWO-STEP SA-MC w/o SA-MVC SAIP (SA-MC+SA-MVC)
Y U V Y U V Y U V Y U V

B -0.05% 0.03% -0.29% -0.10% -0.17% -0.11% -0.11% -0.48% -0.20% -0.25% -0.21% -0.45%
C -0.52% -0.64% -0.69% -0.89% -1.21% -0.70% -1.07% -1.23% -1.31% -1.26% -1.43% -1.41%
E -0.49% -0.51% -0.31% -0.68% -0.90% -0.74% -0.64% -1.46% -0.48% -1.17% -1.19% -0.48%

Avg. -0.32% -0.33% -0.43% -0.51% -0.70% -0.46% -0.56% -0.98% -0.64% -0.82% -0.86% -0.78%
D -0.58% -0.52% -0.93% -0.83% -0.89% -1.28% -0.60% -0.64% -0.64% -0.81% -1.01% -0.10%

Low-delay B Configuration (%)

Class ONE-STEP SA-MC TWO-STEP SA-MC w/o SA-MVC SAIP (SA-MC+SA-MVC)
Y U V Y U V Y U V Y U V

B 0.01% -0.08% 0.14% -0.11% -0.13% 0.00% -0.12% -0.37% 0.11% -0.30% -0.08% -0.17%
C -0.07% 0.00% -0.29% -0.42% -0.79% -0.08% -0.32% -0.37% -0.75% -0.60% -0.58% -0.37%
E -0.33% -0.12% -0.37% -0.43% -0.62% -0.20% -0.27% -0.45% -0.07% -0.66% -0.84% 0.25%

Avg. -0.10% -0.06% -0.13% -0.29% -0.47% -0.08% -0.22% -0.39% -0.22% -0.49% -0.45% -0.13%
D -0.37% -0.65% 0.45% -0.47% 0.14% 0.35% -0.12% 0.21% 0.93% -0.41% -0.49% 0.39%

Random Access Configuration (%)

Class ONE-STEP SA-MC TWO-STEP SA-MC w/o SA-MVC SAIP (SA-MC+SA-MVC)
Y U V Y U V Y U V Y U V

A 0.80% 0.31% 0.41% -0.06% -0.13% -0.13% -0.08% 0.02% 0.02% -0.26% -0.07% -0.19%
B 0.76% 0.55% 0.65% -0.05% 0.07% -0.10% -0.09% -0.04% -0.04% -0.26% 0.21% -0.24%
C 0.55% 0.34% 0.63% -0.20% -0.24% -0.26% -0.18% -0.30% -0.03% -0.50% -0.46% -0.29%
E 0.40% 0.26% 0.29% -0.06% 0.16% 0.09% -0.13% -0.10% 0.07% -0.52% -0.46% -0.24%

Avg. 0.67% 0.38% 0.51% -0.09% -0.05% -0.11% -0.11% -0.09% 0.00% -0.37% -0.14% -0.23%
D 0.70% 0.67% 0.40% -0.12% 0.52% 0.12% -0.09% 0.27% -0.06% -0.45% 0.02% -0.29%

First, we validate the effectiveness of SA-MC and study
the influence of different components of SA-MC, including
the two-step prediction fusion (TWO-STEP) and overlapped
region-based weighted strategy (ORMC). As shown in Ta-
ble VIII , we introduce two variants for comparison with
SA-MC. ONE-STEP indicates that the final prediction is
directly derived according to the segmentation mask from
the block-level primary and secondary predictions at the end
of fractional-part MC. TWO-STEP indicates that prediction
fusion is performed on the integer and fractional parts of MC.
The integer-part fusion mainly aims to generate the accurate
integer pixels for the subsequent fractional MC process, and
provides the precise adjacent reference pixels for the interpo-
lation of edge-adjacent fractional pixels. SAIP indicates that
the TWO-STEP and ORMC are all used in SA-MC. Through
the experimental results, we draw two conclusions: (1) For the
comparison of ONE-STEP and SAIP, the experimental results
show that SA-MC is superior to the direct multi-region MC,
which demonstrates the assistance of a segmentation mask
is beneficial to generating accurate prediction. (2) For the
comparison of two variants and SAIP, the experimental results
show that TWO-STEP and ORMC have a significant effect on
SA-MC, and further demonstrate that TWO-STEP can better
assist DCTIF in generating accurate fractional-pixel prediction
and ORMC is beneficial to reducing the boundary artifacts.

Second, we validate the effectiveness of SA-MVC. In Ta-
ble VIII , we introduce a variant for comparison with SA-
MVC. Instead of using SA-MVC, the secondary candidate list
is constructed according to the regular merge candidate order.

For the comparison of variant and SAIP, the experimental
results show that our proposed MVC method helps achieve
more bits saving than the regular method, which demonstrates
the assistance of a segmentation mask is beneficial to coding
the MV efficiently.

2) Comparison of Mode Selection: Figure 9 shows the
mode selected results of the GEO mode and our proposed
SAIP mode, more results are shown in Section III of supple-
mentary material. Compared with GEO, SAIP possesses more
flexible motion field description capability, which focuses on
more motion-inconsistent regions at the edges of moving
objects and handles more difficult cases such as the outer
outline of the people in BQMall. Meanwhile, the SAIP not
only tackles the efficient representation of complex motion
fields, but also tends to hit the larger block to save the bit
consumption of the refined partition.

D. Limitation and Potential
In this subsection, we discuss the limitations and potential

of the proposed SAIP through its effectiveness on different
scenes and configurations.

1) Limitation: Based on the above experiments, we find
that the performance of SAIP is limited by segmentation
accuracy. Here we analyze it in two aspects: (1) Segmentation
Technology: From the CTC results of SAIP (Table II ), we
find that our method performs poorly on some sequences with
special cases (extreme motion, serious occlusion, large resolu-
tion), which is mainly limited by the poor segmentation results,
such as BQTerrence (camera motion), Tango2 (indistinguish-
able foreground and background), Campfire (dense moving
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TABLE IX
BD-RATE RESULTS OF OUR PROPOSED SAIP METHOD COMPARED TO VTM-12.0 ON THE TEST SEQUENCES OF VOS’S TRAIN AND VALIDATION

DATASET [52]–[54], THE DETAILED SETTINGS OF DATASET ARE SHOWN IN SECTION II-B OF SUPPLEMENTARY MATERIAL.

Dataset
Sequence

Num

Objects

Num1

Selected

Character

LDB (R2/L3) RA (R/L) Accuracy (R-L)4 LDB ∆6 RA ∆6

Average5 Highest5 Average Highest J & F Mean4 Average Highest Average Highest

DAVIS-17 [52] 30 99 Diverse Scenes

Multiple Objects

Complex Motions

High Quality

-0.21%/-0.51% -0.36%/-0.81% -0.11%/-0.39% -0.33%/-0.72% 83.2/83.1/81.6/77.7 -0.30% -0.45% -0.28% -0.39%

Youtube-VOS [53] 30 120 -0.19%/-0.41% -0.31%/-0.77% -0.04%/-0.31% -0.22%/-0.64% 80.7/79.3/77.3/74.9 -0.22% -0.46% -0.27% -0.42%

MOSE [54] 30 295 -0.16%/-0.43% -0.41%/-0.73% 0.09%/-0.27% -0.25%/-0.53% 72.3/68.5/62.7/57.2 -0.27% -0.32% -0.36% -0.28%

Overall 90 514 -0.19%/-0.45% -0.36%/-0.77% -0.02%/-0.32% -0.27%/-0.63% 78.7/77.0/73.9/69.9 -0.26% -0.41% -0.30% -0.36%
1 Objects Num denotes the total object number of the test sequences. The object number of each test sequence is shown in Section II-B of Supplementary Material.
2 R indicates the test results are performed by the proposed reference frame-based segmentation method (Section IV).
3 L indicates the test results are performed by the reference frame’s hand-annotated label segmentation mask (open-source annotation of train and validation dataset [52]–[54]).
4 Accuracy (R-L) indicates the similarity between the proposed segmentation method’s result and hand-annotated label mask, which is evaluated by the mean of region similarity
J and contour accuracy F [38] (Js / Fs in [53]). The four results correspond to the segmentation similarity under different quantization parameters (22, 27, 32, 37).
5 Average indicates the average BD-rate reduction on the Y Component of proposed method on the test sequences. Highest indicates the highest performance among them.
6 ∆ indicates the SAIP’s performance difference between R- and L-based segmentation generation method.

(a) GEO (BQMall, QP: 37, POC : 68)

(b) GEO + SAIP (BQMall, QP : 37, POC: 68)

Fig. 9. Mode Selection Results on VTM-12.0 (Configuration: LDB), where
(a) uses the GEO mode (anchor: VTM-12.0), (b) uses the GEO mode and
proposed SAIP mode. The white/red blocks indicate the block with GEO/SAIP
selected. (More results are shown in the supplementary material.)

objects). (These failure segmentation cases are shown in
Section II-A of supplementary material.) Meanwhile, learned
segmentation schemes have not yet been widely generalized
to large-resolution video, such as 1080P, 4k (resolution of
Class A, B). The datasets and benchmarks [52], [53] of
these segmentation schemes are mainly evaluated on medium
resolution (480P-720P). Due to the limited capability and
generalization of the learned segmentation method [31], [37],
it’s difficult to generate accurate segmentation to assist the
motion prediction of SAIP in some challenging scenes. (2)

Dependence of Temporal-domain Reference Structure: From
the comparison of SAIP’s CTC results under different config-
urations in Table II , we find that the reference structure also
affects its performance. Due to the motion area partition of
each block being derived from the reference block, the motion
area partition of the long-distance reference block is difficult
to adapt to the motion situation of the current coding block
and further influences prediction accuracy, such as the RA
reference structure case.

2) Potential: To explore the potential improvement brought
by segmentation accuracy, we test the SAIP on the datasets
(train and validation datasets of VOS Benchmark [52]–[54])
with hand-annotated label segmentation mask to avoid the
above limitations. For each dataset, we select 30 videos with
multiple moving objects, and test the SAIP under different
segmentation settings, including the proposed segmentation
method (Section IV) and hand-annotated label segmentation
mask. The detailed settings and experimental results are shown
in Table IX . Table IX shows the difference of SAIP’s per-
formance under different segmentation settings (LDB/RA ∆)
can achieve up to -0.41%, -0.36%, and on average -0.26%, -
0.30% BD-rate reduction (Y component) on VTM-12.0. (The
visualization of the different settings’ segmentation results is
shown in Section II-B of supplementary material.) It demon-
strates that the SAIP can achieve higher performance with
the assistance of the better segmentation mask, and exhibits
positive performance potential with continuous enhancement
of advanced segmentation technology [16]–[18] in the future.

X. CONCLUSION

In this paper, object segmentation-assisted inter prediction
is proposed to improve the representation of complex motion
fields in inter-frame coding. We introduce segmentation in-
formation to help the codec achieve the flexible partition of
motion area, and further utilize it to assist the entire inter pre-
diction process. We exploit the potential semantic information
to improve the coding performance under the advanced coding
standard. We have conducted extensive experiments to verify
the effectiveness of our method. Experimental results show
that the proposed method achieves on average 0.82%, 0.49%
and 0.37% BD-rate reduction compared to VTM anchor, under
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the LDP, LDB, RA profiles, respectively, and also performs
better than the other state-of-the-art methods.

In future work, we will further extend the SAIP with flexible
motion modeling in VVC. The design of the current SAIP
mainly addresses translation motion in the coding scene. We
may further consider the additional prediction process to solve
the more complex situation like rotation and zooming. We will
further explore the combination of SAIP and the motion model
[55]–[59]. In addition, the potential semantic information can
also be used to improve the performance of the other modules
in the codec, such as quantization [60], [61], transform [62],
[63], and post-processing [64], [65]. We will further extend the
other modules with the assistance of segmentation information
to achieve good performance in future video coding.
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I. LEARNED SEGMENTATION FOR REFERENCE PICTURES

Here we show some segmentation masks of CTC test sequences (Fig. 1) segmented by our proposed segmentation strategy
in the actual coding process.

(A) BQMall, Poc:76 Proposed Method, Reconstructed Frame QP: 32 (B) BaketballDrill, Poc:5 Proposed Method, Reconstructed Frame QP: 27

(C) MarketPlace, Poc:9 Proposed Method, Reconstructed Frame QP: 32 (D) BasketballDrive, Poc:58 Proposed Method, Reconstructed Frame QP: 27

Fig. 1. Visualization of segmentation masks of CTC test sequences segmented by our proposed segmentation strategy in the actual coding process.

II. LIMITATION AND POTENTIAL

A. Visualization of Failure Segmentation Cases

Supplement Section IX.D 1), here we show some failure segmentation cases of CTC test sequences in Fig. 2.

(A) BQTerrace, Poc:62 Failure Segmentation Case: 
Camera Motion with Tiny Objects

(B) Tango2, Poc:47 Failure Segmentation Case: 
Indistinguishability of Foreground and Background

(C) Campfire, Poc:34 Failure Segmentation Case: Dense Moving Objects (D) RitualDance, Poc:83 Failure Segmentation Case: 
Camera Motion with Dense Objects

Fig. 2. Failure segmentation cases on some sequences with special cases (extreme motion, serious occlusion, large resolution).

B. Setting of Potential Exploration Experiments

Supplement Table IX (BD-rate results of our proposed SAIP method compared to VTM-12.0 on the test sequences of VOS’s
train and validation dataset), here we detail the setting of the selected test sequences of VOS’s train and validation dataset. For
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(A) Davis-17, gold-fish, Poc:7 Hand-annotated Label Mask

(B) Youtube-VOS, Poc:10

(C) MOSE, Poc:8

Proposed Segmentation Method, QP:37

Proposed Segmentation Method, QP:32

Proposed Segmentation Method, QP:37

Hand-annotated Label Mask

Hand-annotated Label Mask

Fig. 3. The difference of segmentation results of some selected test sequences of Davis-17 [1], Youtube-VOS [2], MOSE [3].

each benchmark (Davis-17 [1], Youtube-VOS [2], MOSE [3]), we select 30 videos with multiple moving objects. The selected
sequences and the number of objects of each sequence (in parentheses) are shown as follows.

Davis-17 [1] (99 objects in total): bike-packing (2), boxing-fisheye (3), cat-girl (2), classic-car (3), color-run (3), crossing
(3), dancing (3), disc-jockey (3), dogs-jump (3), dogs-scale (4), drone (4), gold-fish (5), horsejump-high (2), horsejump-low (2),
india (3), judo (2), kid-football (2), lab-coat (3), lindy-hop (8), loading (3), longboard (5), motocross-bumps (2), motocross-jump
(2), night-race (2), pigs (3), schoolgirls (7), sheep (5), shooting (3), tuk-tuk (3), train (4).

Youtube-VOS [2] (120 objects in total): 0a7b27fde9 (2), 0a8c467cc3 (3), 0a23765d15 (4), 0ce06e0121 (2), 0043f083b5 (3),
00917dcfc4 (3), 011ac0a06f (5), 01c4cb5ffe (3), 01c76f0a82 (4), 0348a45bca (5), 0358b938c1 (4), 03c95b4dae (3), 07353b2a89
(4), 077d32af19 (4), 07c62c3d11 (3), 1122c1d16a (6), 1250423f7c (4), 165c42b41b (4), 19e061eb88 (4), 1aa3da3ee3 (4),
1af8d2395d (4), 1d3087d5e5 (5), 1ef8e17def (3), 1f7d31b5b2 (3), 1f8014b7fd (4), 21f4019116 (5), 351cfd6bc5 (5), 4122aba5f9
(5), c55784c766 (6), c4f5b1ddcc (6).

MOSE [3] (295 objects in total): 78a1f4b1 (5), 55ae6921 (4), 072e7b3f (4), 23b9a3ea (14), a386eaa2 (6), 905d8740 (6),
93e22d48 (10), 25af2eeb (20), 6da17988 (8), fbfb6e30 (12), f6f8b4a6 (9), 662a1846 (9), 37af9ac1 (10), 8d0d641a (9), 831e0009
(8), 8c8b7913 (9), ba538072 (13), fabae187 (10), 82667d52 (10), ba0e4dd4 (8), 7be91184 (11), 14655f54 (10), adf443e1 (11),
2f477d05 (13), 2a2745e5 (11), e638e950 (13), 255f86ef (12), 86a2b59f (20), 23e046fb (10), 06ea172e (12).

Here we show the difference of segmentation results of some selected test sequences of Davis-17 [1], Youtube-VOS [2],
MOSE [3] in Fig. 3 , including the results segmented by our proposed segmentation method, hand-annotated label segmentation
mask provided by the open-source annotation of train and validation dataset.

III. MODE SELECTION RESULTS

In Fig. 9, we show the selection results of different modes (GEO, SAIP) on the BQMall sequence. Here we show more
selection results on other sequences of CTC for the comparison of different modes (GEO, SAIP) in Fig. 4 .
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(a) GEO (Johnny, QP=37, POC=83) (b) GEO + SAIP (Johnny, QP=37, POC=83)

(a) GEO (MarketPlace, QP=32, POC=10) (b) GEO + SAIP (MarketPlace, QP=32, POC=10)

(a) GEO (BasketballDrill, QP=37, POC=28) (b) GEO + SAIP (BasketballDrill, QP=37, POC= 28)

(a) GEO (BlowingBubbles, QP=37, POC=56) (b) GEO + SAIP (BlowingBubbles, QP=37, POC=56)

Fig. 4. The selection results of different modes of CTC test sequences on VTM-12.0 (Configuration: LDB), where (a) uses the GEO mode (anchor: VTM-12.0),
(b) uses the GEO mode and proposed SAIP mode. The white/red blocks indicate the block with GEO/SAIP selected.
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