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Abstract

Video compression relies heavily on exploiting the temporal
redundancy between video frames, which is usually achieved
by estimating and using the motion information. The mo-
tion information is represented as optical flows in most of
the existing deep video compression networks. Indeed, these
networks often adopt pre-trained optical flow estimation net-
works for motion estimation. The optical flows, however, may
be less suitable for video compression due to the following
two factors. First, the optical flow estimation networks were
trained to perform inter-frame prediction as accurately as pos-
sible, but the optical flows themselves may cost too many
bits to encode. Second, the optical flow estimation networks
were trained on synthetic data, and may not generalize well
enough to real-world videos. We address the twofold limi-
tations by enhancing the optical flows in two stages: offline
and online. In the offline stage, we fine-tune a trained opti-
cal flow estimation network with the motion information pro-
vided by a traditional (non-deep) video compression scheme,
e.g. H.266/VVC, as we believe the motion information of
H.266/VVC achieves a better rate-distortion trade-off. In the
online stage, we further optimize the latent features of the
optical flows with a gradient descent-based algorithm for the
video to be compressed, so as to enhance the adaptivity of
the optical flows. We conduct experiments on two state-of-
the-art deep video compression schemes, DCVC and DCVC-
DC. Experimental results demonstrate that the proposed of-
fline and online enhancement together achieves on average
13.4% bitrate saving for DCVC and 4.1% bitrate saving for
DCVC-DC on the tested videos, without increasing the model
or computational complexity of the decoder side.

Introduction
Video compression relies heavily on exploiting the tem-
poral redundancy between video frames, which is usually
achieved by estimating and using the motion information.
The motion information is represented as optical flows in
most of the existing deep video compression networks (Lu
et al. 2019; Li, Li, and Lu 2021; Sheng et al. 2022; Lin et al.
2020; Shi et al. 2022; Li, Li, and Lu 2022, 2023; Hu and
Xu 2023). Indeed, these networks often adopt pre-trained
optical flow estimation networks (Ranjan and Black 2017;
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Ilg et al. 2017; Sun et al. 2018) to estimate the motions
between video frames. Taking a widely acknowledged and
highly flexible scheme, DCVC (Li, Li, and Lu 2021), as an
example, the pre-trained Spynet (Ranjan and Black 2017)
is used for estimating the optical flows. The optical flows
can be considered as pixel-wise motion vectors (MV) and
are compressed by an autoencoder-based MV encoder (Min-
nen, Ballé, and Toderici 2018). In the training stage, the pre-
trained Spynet is first loaded, and then the whole deep video
compression network is optimized in an end-to-end manner.
In the inference stage, the motion information of different
video contents is obtained through the fixed networks.

However, regarding the optical flows estimated by the
commonly-used pre-trained optical flow estimation net-
works (Ranjan and Black 2017; Ilg et al. 2017; Sun et al.
2018) as motion information in deep video compression
schemes may be less suitable due to the following two fac-
tors. First, the pre-trained optical flow estimation networks
are trained to perform inter-frame prediction as accurately
as possible, but the optical flows themselves may cost too
many bits to encode. Although they can be further optimized
with the whole video compression networks in an end-to-
end manner, the inappropriate initial point may affect the
final optimization result. Second, the optical flow estimation
networks are trained on synthetic data (Dosovitskiy et al.
2015; Butler et al. 2012; Baker et al. 2011), and may not gen-
eralize well enough to real-world videos. The end-to-end op-
timization in video compression networks can alleviate the
domain gap between the synthetic data and the real-world
videos to some degree. However, once the end-to-end opti-
mization is finished, the optical flow estimation network is
”optimal” in the sense that the average performance over the
entire training set is optimal, but not ”optimal” in the sense
that the network produced optical flows may not be the op-
timal for any given video sequence.

To address the twofold limitations, we consider learn-
ing the good traditions from the inter-frame prediction
techniques in traditional (non-deep) video compression
schemes. The latest traditional video compression standard
H.266/VVC (Bross et al. 2021) has achieved great suc-
cess in effectively estimating and using the motion informa-
tion, which is represented by MV. Specifically, in the offline
stage, various hand-crafted inter-frame prediction modes are
first designed for different types of motions without op-
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timization. Then, the optimal mode is searched online to
achieve the best rate-distortion (RD) performance for each
coding sequence. Such offline and online optimization is be-
lieved a promising direction for learning-based video com-
pression as well in the reference (Huo et al. 2022).

Similar to the two-stage strategy in the traditional video
compression scheme, we address the twofold limitations of
the optical flows by enhancing them in two stages: offline
and online. In this paper, we propose an offline and online
enhancement on the optical flows to better estimate and uti-
lize motion information under the RD constraint. Specifi-
cally, in the offline stage, the trained optical flow estimation
network Spynet is fine-tuned by the MV provided by VTM
(reference software of H.266/VVC), as we believe the MV
of VTM achieves a better RD trade-off. With the guidance
of the MV of VTM, the optical flow estimation network can
provide a more appropriate initial point for end-to-end opti-
mization in video compression networks. In the online stage,
we optimize the latent features of the optical flows with a
gradient descent-based algorithm for the video to be com-
pressed, so as to enhance the adaptivity of the optical flows.
Inspired by the search-based online optimization algorithm
in traditional video compression schemes, our scheme en-
ables online updating the latent features of the optical flows
by minimizing the RD loss in the inference stage, which
has been introduced in deep image compression (Campos
et al. 2019). When online updating the latent features of the
optical flows, the parameters of the whole video compres-
sion networks are fixed and the decoding time remains un-
changed. With the online enhancement, the updated latent
features can help the video compression networks achieve a
better RD performance than the latent features obtained by
a simple forward pass through the MV encoder.

We conduct experiments on the two widely acknowl-
edged deep video compression schemes DCVC (Li, Li, and
Lu 2021) and DCVC-DC (Li, Li, and Lu 2023) to verify
the effectiveness of our proposed scheme. Experimental re-
sults demonstrate our scheme can outperform both baseline
schemes without increasing the model size or computational
complexity on the decoder side.

Our contributions are summarized as follows:

• We propose an offline enhancement on the optical flows
by fine-tuning the optical flow estimation network with
the MV of VTM. With the guidance of the MV of VTM,
the optical flow estimation network can provide a more
appropriate initial point for end-to-end optimization in
deep video compression networks.

• We further enhance the adaptivity of the optical flows by
online optimizing the latent features of the optical flows
according to the contents of different coding sequences
in the inference stage without changing the network pa-
rameters.

• When equipped with our proposed offline and online op-
tical flow enhancement methods, the baseline scheme
DCVC achieves a better RD performance without in-
creasing the model size and decoding complexity.

Related Work
Deep Video Compression
With the development of deep learning (Xiao et al. 2020;
Li et al. 2023), deep video compression has explored a
new direction. Deep video compression frameworks can be
categorized into two main types: the motion-compensated
prediction and residual coding framework and the motion-
compensated prediction and conditional coding framework.
DVC (Lu et al. 2019) is the pioneering work for the motion-
compensated prediction and residual coding framework,
which replaced each part in traditional video compression
framework with neural networks. DCVC (Li, Li, and Lu
2021) introduced the motion-compensated prediction and
conditional coding framework, which is able to utilize the
learned temporal correlation between the current frame and
predicted frame, rather than the subtraction-based residual.

Research on the frameworks. For the motion-
compensated prediction and residual coding framework,
the motion compression and residual compression was
improved (Lu et al. 2020b; Hu et al. 2020). Multi-frame-
based motion estimation and compensation (Lin et al.
2020) can reduce the temporal redundancy efficiently.
The deformable convolution (Dai et al. 2017) was applied
for motion estimation, compression, and compensation
in feature domain (Hu, Lu, and Xu 2021), and coarse-to-
fine motion compensation (Hu et al. 2022) was further
proposed. Pixel-to-feature motion prediction (Shi et al.
2022) improved the inter-frame accuracy without increasing
decoding complexity.

Following the motion-compensated prediction and condi-
tional coding framework, multi-scale temporal context min-
ing (Sheng et al. 2022) and hybrid spatial-temporal entropy
model (Li, Li, and Lu 2022) were designed to improve the
compression performance. DCVC-DC (Li, Li, and Lu 2023)
further increased the context diversity in both temporal and
spatial dimensions by introducing the group-based offset di-
versity and quadtree-based partition.

Research on the optimization strategy. Lu et al. (Lu
et al. 2020a) applied a new training objective with multiple
time steps and adopted an online encoder updating scheme
which updates the parameters of the encoder in the inference
stage. A pixel-level implicit bit allocation (Xu et al. 2023)
was proposed by using online optimization.

Inter-frame Prediction in Traditional Video
Compression
In the past decades, several traditional compression
schemes have been proposed, such as H.264/AVC (Wie-
gand et al. 2003), H.265 /HEVC (Sullivan et al. 2012), and
H.266/VVC (Bross et al. 2021).

In the latest coding standard (H.266/VVC (Bross
et al. 2021)), many advanced inter-frame prediction tech-
niques (Huo et al. 2018; Li et al. 2023) have been pro-
posed to attain high inter-frame coding efficiency. To esti-
mate the accurate motion, various motion situations (trans-
lation, rotation motion model, etc.) corresponding to dif-
ferent inter-frame prediction modes (AMVP (Chien et al.
2021), Affine (Li et al. 2017), etc.) are executed to search for
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Figure 1: (a) Overview of our framework. (b) Offline enhancement for the optical flow network. The training procedure of
the optical flow estimation network is supervised by the MV of VTM. (c) Online enhancement for the optical flow. The latent
features of the optical flow yt and zt are online updated by minimizing the RD loss LRDt

.

the optimal MV for each coding region via Rate-Distortion-
Optimization (RDO) (Sullivan and Wiegand 1998). For each
coding sequence, the optimal mode is searched online from
multiple inter-frame prediction modes.

Considering the latest traditional video codec
VTM (Bross et al. 2021) searches each MV for the
best RD performance for each coding sequence, the MV
can achieve a better RD trade-off than the optical flows.
Thus, in this paper, we enhance the optical flows with the
MV of VTM in offline stage. In the online stage, inspired
by the VTM searching-based strategy in motion estimation,
we further optimize the latent features of the optical flows
with a gradient descent-based algorithm.

Approach
In this paper, our proposed offline and online enhancement
is integrated into two baseline scheme DCVC and DCVC-
DC to demonstrate the effectiveness. The encoding proce-
dure of our scheme, as illustrated in Fig. 1(a), can be di-
vided into three parts: motion estimation, motion compres-
sion, and contextual compression.

Motion Estimation. The input frame xt and the ref-
erence frame x̂t−1 are fed into our proposed offline en-
hanced optical flow estimation network to estimate the opti-
cal flows, which are considered as pixel-wise MV vt. Fol-
lowing DCVC and DCVC-DC, the network is based on
Spynet, but we fine-tune it with the MV of VTM.

Motion Compression. The estimated MV vt is com-
pressed by an autoencoder-based MV encoder (Minnen,
Ballé, and Toderici 2018). The latent features of the optical
flows, MV features yt and MV hyperprior zt, are online en-

hanced by updating with a gradient descent-based algorithm
in the inference stage.

Contextual Compression. Following DCVC and DCVC-
DC, the input frame xt is compressed conditioned on the
context ẍt, which is extracted by the context extractor using
the reference frame x̂t−1 and the decoded MV v̂t as input.

Offline Enhancement
To alleviate the domain gap between the synthetic data and
the real-world videos, and provide a more appropriate initial
point for the end-to-end optimization in deep video com-
pression networks, we propose the offline enhancement on
the optical flows. Different from DCVC and DCVC-DC, we
fine-tune the pre-trained Spynet with the MV searched by
VTM for the best RD performance on real-world videos,
which has a better RD trade-off than the optical flows.

Preliminaries. To provide the optical flow estimation
network with accurate and learnable labels, we extract the
block-level MV from each frame by VTM under certain
configuration. To match the low-delay mode of DCVC and
DCVC-DC, the reference list of VTM is set to only include
the previous frame of the current frame. Besides, for acquir-
ing finer MV on the encoder side, we set the quantization
parameter (QP) to 22 and turn off the decoder-side MV re-
fine technique (PROF (Luo, He, and Chen 2019)). As the
coding block predicted by intra mode is not appropriated for
the training of optical flow estimation network, we turn off
the intra-prediction mode and intra-related inter technique
(CIIP (Chien et al. 2021)) in VTM to obtain the MV. The ex-
tracted block-level MV is at the quarter resolution, so we use
the nearest interpolation to obtain the full-resolution block-
level MV vt. Besides, as the precision of VTM MV is 1/16
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sample, the extracted MV is multiplied by 16 to store the
integer and fractional part of MV. When as the label to fine-
tune the Spynet, the MV needs to be divided by 16.

Specifically, as shown in Fig. 1(b), we fine-tune the pre-
trained Spynet under the guidance of the extracted MV vt,
which is searched by VTM for the best RD performance on
real-world videos. To better match the warp operation in the
video compression, our training objective for Spynet is to
minimize both the End Point Error (EPE) loss and the Mean
Squared Error (MSE) loss between the input frame and the
corresponding warp frame. Let x̌t denote the warp frame,

x̌t = w(xt−1, vt), (1)

wherew(·) denotes the warp operation. Therefore, our train-
ing objective is to minimize a weighted sum of EPE and
MSE loss,

LME = 1
mn

∑
i,j

√
(vi − vi)2 + (vj − vj)2 + λME · d(xt, x̌t). (2)

The m×n in Eq. (2) is the image dimension and the i and j
subscript indicate the horizontal and vertical components of
the flow vector and motion vector. d(xt, x̌t) represents the
MSE metric for measuring the difference between the input
frame xt and the warp frame x̌t. λME controls the trade-off
between the EPE and MSE loss.

Compared with Spynet, the warp frames of enhanced
Spynet have an average improvement of 1.15dB (33.23dB
vs. 32.08dB) in JVET CTC test sequences (Bossen et al.
2019). The improvement in inter-frame prediction accuracy
indicates that the offline enhancement can alleviate the do-
main gap between the synthetic data and the real-world
videos to some degree.

End-to-End Training
After fine-tuning the pre-trained Spynet, we deploy it into
DCVC and DCVC-DC, then train the whole video compres-
sion network in an end-to-end manner which is the same as
DCVC and DCVC-DC. Thus, the training loss is as follows:

L = λ·D+R = λd(xt, x̂t)+H(ŷt)+H(ẑt)+H(ĝt), (3)

where ŷt = Q(yt), ẑt = Q(zt), and ĝt = Q(gt). Q(·) rep-
resents the quantization operator. The term R in Eq. (3) de-
notes the number of bits used to encode the frame, and R is
computed by adding up the number of bitsH(ŷt) andH(ẑt)
for encoding the latent features of motion information and
H(ĝt) for encoding the latent features of context. d(xt, x̂t)
denotes the distortion between the input frame xt and the re-
construction frame x̂t. λ is a hyperparameter that determines
the trade-off between the number of bits R and the distor-
tion D. The MV of VTM is searched for the best trade-off
between the bits cost and the MSE loss, so we only optimize
our scheme with D representing the MSE.

Online Enhancement
To further enhance the adaptivity of the optical flows and
achieve a better compression performance, we propose the
online enhancement on the optical flows. In the inference
stage, we online optimize the latent features of the optical
flows with a gradient descent-based algorithm minimizing
the RD loss for the videos to be compressed.

Algorithm 1: Optical Flow Latent Updating in the Inference
Stage
Input: input frame xt and the reference frame x̂t−1

Parameter: MV encoder and hyperprior encoder EncMV

The video decoder with gradient DecT
The video decoder without gradient DecI
N represents the total updating times
η represents the step size (learning rate)
b·e represents rouding operation and u ∼ U(−0.5, 0.5)
Output: The reconstruction frame x̂t and latent features of
context ĝt

1: yt0, zt0 ⇐ EncMV(xt, x̂t−1)
2: ŷ0t , ẑ

0
t ⇐ byt0e, bzt0e

3: x̂0t , ĝ
0
t ⇐DecI(ŷ0t , ẑ0t )

4: ŷopt , ẑ
op
t ⇐ ŷ0t , ẑ

0
t

5: L̂op
RDt

= λ · d(xt, x̂
0
t ) +H(ŷ0t ) +H(ẑ0t ) +H(ĝ0t )

6: for i = 0; i < N ; i+ + do
7: ỹit, z̃

i
t ⇐ yt

i + u, zt
i + u

8: x̃it, g̃
i
t ⇐DecT(ỹit, z̃

i
t)

9: L̃i
RDt

= λ · d(xt, x̃
i
t) +H(ỹit) +H(z̃it) +H(g̃it)

10: yt
i+1 ⇐ yt

i − η ∂L̃i
RDt

∂yt
i

11: zt
i+1 ⇐ zt

i − η ∂L̃i
RDt

∂zti

12: ŷi+1
t , ẑi+1

t ⇐ byti+1e, bzti+1e
13: x̂i+1

t , ĝi+1
t ⇐DecI(ŷi+1

t , ẑi+1
t )

14: L̂i+1
RDt

= λ · d(xt, x̂
i+1
t ) + H(ŷi+1

t ) + H(ẑi+1
t ) +

H(ĝi+1
t )

15: if L̂i+1
RDt

< L̂op
RDt

then
16: ŷopt , ẑ

op
t ⇐ ŷi+1

t , ẑi+1
t

17: L̂op
RDt
⇐ L̂i+1

RDt

18: end if
19: end for
20: x̂t, ĝt ⇐DecI (ŷopt , ẑ

op
t )

Single-frame online optimization. As shown in Fig.
1(c), for the input frame xt and reference frame x̂t−1 in a
group of pictures (GOP), we online update the latent features
of the optical flows (MV feature yt and the MV hyperprior
zt) by a gradient descent-based algorithm in the inference
stage. After N iterations, we obtain the latent features of the
optical flows ŷopt and ẑopt which are optimal for the consec-
utive two frames xt and x̂t−1. Then, the latent features of
context ĝt and reconstruction frame x̂t are generated by the
ŷopt and ẑopt , and we start to online update the latent features
of the optical flows generated by the next input frame xt+1

and the reference frame x̂t in a GOP.

The pipeline of the optical flow latent updating algorithm
is shown in Algorithm 1. Firstly, the initial latent features
of the optical flows yt0 and zt0 are generated by the input
frame xt and the reference frame x̂t−1. Secondly, the initial
RD cost L̂op

RDt
can be computed by feeding the initial latent

features of the optical flows to the video decoder without
gradient DecI. Then, the latent features of the optical flows
are online updated iteratively to minimize the RD loss of
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Figure 2: Overview of the three-frame online optimization.

each iteration L̃i
RDt

:

L̃i
RDt

= λ · d(xt, x̃
i
t) +H(ỹit) +H(z̃it) +H(g̃it), (4)

where yti denotes the MV feature of the current frame af-
ter i steps of update, and zt

i denotes the MV hyperprior
of the current frame after i steps of update. Following the
work (Ballé, Laparra, and Simoncelli 2016), we use adding
uniform noise to approximate the rounding during training,
ỹit = yt

i + u, z̃it = zt
i + u, and u ∼ U(−0.5, 0.5). The

latent features of context g̃it and reconstruction frame x̃it are
generated by feeding the latent features of the optical flows
ỹit and z̃it to the video decoder with gradient DecT during
the online optimization.

The only difference between DecT and DecI lies in the
quantization. To allow online optimization via gradient de-
scent, the quantization in DecT is replaced by adding uni-
form noise, while the quantization in DecI is using rounding
operation directly. During the updating iterations, the latent
features of the optical flows are updated by minimizing the
RD loss of each iteration L̃i

RDt
, which is computed by send-

ing latent features of the optical flows to DecT. Then, the
updated latent features of the optical flows are sent to DecI
to compute the RD cost of each iteration L̂i

RDt
, and we only

save the optimal latent features of the optical flows ŷopt and
ẑopt which lead to the minimal RD cost L̂op

RDt
.

Multi-frame online optimization. Considering the error
propagation in deep video compression frameworks, we fur-
ther extend the single-frame online optimization algorithm
to a multi-frame online optimization algorithm. We design a
sliding-window-based online optimization algorithm to up-
date the latent features of the optical flows by minimizing
the multi-frame RD loss of each iteration L̃i

mulRDt
for all

frames inside a window:

L̃i
mulRDt

=
∑W

j=t αj [λd(xj , x̃
i
j) +H(ỹij) +H(z̃ij) +H(g̃ij)], (5)

where window size W denotes the number of frames inside
a window and αj is a hyperparameter that determines the
weight of RD loss for different frames.

Specifically, the overview of three-frame online optimiza-
tion is shown in Fig. 2. The consecutive three frames in a
GOP x̂t−1, xt, and xt+1 are sent into the sliding window to
update the latent features of the optical flows yt and zt it-
eratively minimizing multi-frame RD loss of each iteration

L̃i
mulRDt

. After N iterations, we obtain the latent features
of the optical flows ŷopt and ẑopt which are optimal for the
consecutive three frames x̂t−1, xt, and xt+1, leading to the
minimal multi-frame RD cost L̂op

mulRDt
. The reconstruction

frame x̂t is generated by the updated latent features ŷopt and
ẑopt , then the next consecutive three frames x̂t, xt+1, and
xt+2 will be sent to the sliding window. When the sliding
window includes the last frame of the GOP, the window size
W will decrease by 1 until it equals to 2.

Experiments
Experimental Setup
Training Data. We use BVI-DVC (Ma, Zhang, and Bull
2021) dataset for fine-tuning Spynet. The BVI-DVC dataset
contains 800 sequences at various spatial resolutions from
270p to 2160p. The motion vectors are extracted by VTM-
10.01. The commonly-used Vimeo-90k (Xue et al. 2019)
dataset is used for training DCVC and DCVC-DC in an end-
to-end manner. During the training, all the videos of training
sets are randomly cropped into 256 × 256 patches.

Testing Data and Conditions. We use the JVET CTC
test sequences (Bossen et al. 2019) for evaluating the fine-
tuning of Spynet. UVG (Mercat, Viitanen, and Vanne 2020),
MCL-JCV (Wang et al. 2016) and HEVC (Bossen et al.
2013) datasets are used for testing our scheme. The UVG
the MCL-JCV dataset has 37 1080p sequences. The HEVC
dataset contains 16 sequences including Class B, C, D, and
E. In addition, HEVC RGB dataset (Flynn, Sharman, and
Rosewarne 2013) are also evaluated. We test 96 frames for
each video, and the intra period is set to 12 for each dataset.
Besides, we use Cheng2020Anchor (Cheng et al. 2020)
implemented by CompressAI (Bégaint et al. 2020) for intra-
frame coding in DCVC.

Implementation Details. Our scheme includes three
training stages, which consist of the fine-tuning of Spynet,
offline training of the video codec (DCVC and DCVC-DC),
and online optimization of the video codec with the en-
hanced Spynet. In the first stage, we set λME to 100, and
fine-tune the Spynet using the extracted MV for 1,000,000
iterations. In the second stage, we deploy the enhanced
Spynet into the video codec and train the whole video com-
pression network for 5,000,000 iterations until converge.
Finally, we set the updating times N in Algorithm 1 to
1500 according to the ablation study. The initial learning
rate for the first two steps is 1e-4, then decrease to 5e-5
at the 800,000th iteration and 4,000,000th iteration respec-
tively. The initial learning rate for online optimization is 5e-
3, which is decreased by 50% at the 1200th iteration. The
Adam optimizer (Kingma and Ba 2014) is used, and the
batch size is set to 16 for the first training stage and 4 for
the second training stage.

Comparisons with Baseline and SOTA Methods
Comparisons with Baseline Method. Fig. 3 shows RD
curves on HEVC Class B, Class C, Class D, Class E, Class

1https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware VTM/-
/tree/VTM-10.0
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Figure 4: Reconstruction frame of DCVC and our scheme
(DCVC + Offline + Online) and the ground truth in different
sequences from HEVC dataset.

RGB, UVG, and MCL-JCV datasets. Our baseline scheme
is DCVC, and it’s obvious that DCVC with the offline and
online enhancement on the optical flows can outperform
DCVC in all rate points. Besides, both the offline and online
enhancement on the optical flows don’t change the network
structure of DCVC and only optimize the encoder side of
DCVC, leading to no increase in the model size or compu-
tational complexity on the decoder side. The proposed of-
fline and online enhancement together achieves an average
of 13.4% bitrate saving on all testing datasets over DCVC,
and the offline enhancement can achieve an average of 4.3%

B C D UVG Average
DCVC-DC 0.0 0.0 0.0 0.0 0.0

DCVC 66.6 79.7 76.7 78.7 75.4
DCVC-DC + offline -0.7 -1.0 -2.1 -0.4 -1.1

DCVC-DC + offline + online -2.8 -4.9 -4.6 -4.2 -4.1

Table 1: Effectiveness of the offline and online enhancement
on SOTA method DCVC-DC. BD-Rate(%) comparison for
PSNR. Negative values in BDBR represent the bitrate sav-
ing.

bitrate saving on all testing datasets over DCVC
In Fig 4, we present visual results of the reconstruction

frames of DCVC and our scheme across different sequences.
With the offline and online enhancement, our scheme can
achieve higher quality reconstruction, retaining more details
in the boundaries of the motion and the regions with rich
texture, while using fewer bits than DCVC.

Comparisons with SOTA Method. To evaluate that our
method can be effective on other scheme, we also con-
duct experiments on the SOTA (state-of-the-art) deep video
codec DCVC-DC (Li, Li, and Lu 2023). We report the BD-
rate (Bjontegaard 2001) results of HEVC Class B, Class C,
Class D, and UVG datasets in Table 1, which still verify that
both our offline enhancement and online enhancement can
be effective in other schemes. The temporal context mining,
group-based offset diversity, and motion information propa-
gation in DCVC-DC have helped it achieve a more accurate
temporal prediction than DCVC, so the bitrate saving for
DCVC-DC is not as much as that for DCVC.

Ablation Study
Effectiveness of Offline and Online Enhancement. To ver-
ify the effectiveness of the offline and online enhancement
on the optical flows respectively, we compare the compres-
sion performance of the baseline scheme (DCVC) with or
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Offline Online Class B Class C Class D Class E Class RGB UVG MCL-JCV Average
% % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
! % -3.0 -5.9 -4.4 -7.9 -0.7 -1.3 -6.7 -4.3
% ! -10.7 -14.3 -11.1 -9.0 -8.5 -10.1 -11.3 -10.7
! ! -12.0 -17.1 -13.1 -15.3 -8.8 -10.5 -16.9 -13.4

Table 2: Effectiveness of the offline and online enhancement. BD-Rate(%) comparison for PSNR. The anchor is DCVC.

N C D ET
C(s) DT

C(s) ET
D(s) DT

D(s)
0 0.0 0.0 2.71 6.94 0.70 1.91

100 -6.1 -5.1 28.15 6.84 10.42 1.90
500 -9.6 -7.9 132.78 6.95 48.99 1.87

1000 -10.8 -8.6 269.20 6.73 92.58 1.89
1500 -11.2 -8.7 388.73 6.86 141.03 1.91
2000 -11.5 -9.1 530.10 6.84 190.64 1.89
2500 -11.6 -9.2 674.54 6.89 239.05 1.88

Table 3: BD-Rate(%) comparison for PSNR, Encoding time
ET , and Decoding time DT for different online updating
times N . The anchor is DCVC + Offline (N = 0).

without the enhancement. We report the BD-rate results in
Table 2. For online enhancement, the updating times are set
to 1500. From the comparison results, we find that the of-
fline enhancement on the optical flows brings 4.3% bitrate
saving and the online enhancement brings 10.7% bitrate sav-
ing. With both offline and online enhancement, 13.4% bi-
trate saving is achieved. The experimental results indicate
that our offline enhancement on the optical flows can provide
a more appropriate initial point for the online optimization.

Influence on updating times of online enhancement. To
study the influence of the total updating times in online en-
hancement, we change the updating times from 100 to 2500.
For simplification, we only use HEVC Class C and Class
D datasets to explore the reasonable updating times consid-
ering the trade-off between compression performance and
encoding time. The anchor is DCVC with the offline en-
hancement on the optical flows (DCVC + Offline). Table 3
reports the BD-rate results, which indicate that the RD per-
formance is improved as the updating times N increases. To
balance the trade-off between the compression performance
and encoding time complexity, in this paper, we set the up-
dating times N to 1500 for online enhancement. Besides,
the decoding time in Table 3 demonstrates that our proposed
method doesn’t increase decoding complexity.

Multi-frame Online Optimization
In this paper, we adopt the single-frame online optimiza-
tion in the inference stage to improve the compression per-
formance. Besides, we also provide the compression results
adopting the multi-frame online optimization which updates
the latent features of the optical flows by minimizing multi-
frame RD loss. We wish to explore the potential of multi-
frame online optimization on the motion information with a
limited number of frames in a GOP.

For simplification, we only conduct experiments on

W C D ET
C(s) DT

C(s) ET
D(s) DT

D(s)
2 0.0 0.0 518.25 6.84 187.82 1.89
3 -0.5 -0.4 1631.35 6.84 546.99 1.88
4 -0.7 -0.7 2187.58 6.82 683.04 1.88
5 -0.8 -0.8 2706.39 6.87 874.56 1.86

Table 4: BD-Rate(%) comparison for PSNR, Encoding time
ET , and Decoding time DT for different window size W in
the multi-frame online enhancement. The anchor is DCVC
+ Offline + Online, which adopts the single-frame online
optimization (W = 2).

HEVC Class C and Class D datasets. We set the DCVC
with offline and online enhancement on the optical flows
(DCVC + Offline + Online) as the anchor, which adopts the
single-frame online optimization. The single-frame online
optimization is the same as setting the window size W in
Eq. (5) to 2. The hyperparameters α0, α1, α2, and α3 in Eq.
(5) are set to 1, 0.5, 0.2, and 0.1 respectively.

Table 4 reports the BD-rate with updating times N set
to 2000. We compare the compression performance, encod-
ing time, and decoding time of DCVC with multi-frame on-
line enhancement on the optical flows with window size W
set from 2 to 5 in HEVC Class C and Class D datasets. Ta-
ble 4 shows that increasing the window size cannot improve
the compression ratio greatly, but the encoding time has in-
creased a lot when the window size exceeds 2. In this paper,
we currently adopt the single-frame online optimization.

CONCLUSION

In this paper, we have proposed an offline and online en-
hancement on the optical flows to better estimate and utilize
the motion information in the deep video compression net-
work. Specifically, in the offline enhancement, we fine-tune
the optical flow estimation network with the MV of VTM,
which is searched for the best RD performance on real-world
videos. In the online enhancement, we online update the la-
tent features of the optical flows under the RD metric for dif-
ferent coding sequences in the inference stage. Our scheme
can effectively improve the compression performance with-
out increasing the model size or computational complexity
on the decoder side. The experimental results show that our
scheme can outperform DCVC and DCVC-DC in terms of
PSNR by 13.4% and 4.1% respectively under the same con-
figuration.
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