Valse Poster ID: 355, AAAI-2024 **Offline and Online Optical Flow Enhancement for Deep Video Compression** Xihua Sheng Zhuoyuan Li (Presenter) Chuanbo Tang Dong Liu

1. Contributions

- Proposing offline enhancement on the optical flows with the guidance of MV of traditional compression framework (H,266/VVC).
- Enhancing the adaptivity of the optical flows by online optimizing 2. the latent features of the optical flows in the inference stage.
- Superior compression performance on two state-of-the-art schemes 3. **DCVC** and **DCVC-DC** without increasing the model or computational complexity of the decoder side.

2. Motivation and Analysis

Motivation

- Mainstream deep video compression networks often adopt pretrained optical flow estimation networks as motion estimation module, which may be less suitable for video compression.
- 2. The pre-trained optical flow estimation networks are trained to perform inter-frame prediction as accurately as possible, but the optical flows themselves may cost too many bits to encode.
- 3. The optical flow estimation networks are trained on synthetic data, and may not generalize well enough to real-world videos.
- 4. In the inference stage, the motion information is obtained by a simple forward pass through the motion estimation and encoder.

Analysis

- *MV* of *VVC Model*, searched for the best rate-distortion (RD) performance for each coding sequence, is believed to achieves a better rate-distortion trade-off.
- 2. The online search strategy in VVC, rate-distortion-optimization (RDO), can achieves content-adaptive video compression.

Presenter E-mail: zhuoyuanli @ mail.ustc.edu.cn

Offline Enhancement \succ We fine-tune the pre-trained Spynet under the guidance of the extracted MV \overline{v}_{t} . > In the inference stage, we online optimize the latent features of the optical flows with a gradient descent-based algorithm minimizing the RD loss in single-frame level and multi-frame level.

	В	С	D	UVG	Average
DCVC-DC	0.0	0.0	0.0	0.0	0.0
DCVC	66.6	79.7	76.7	78.7	75.4
DCVC-DC + offline	-0.7	-1.0	-2.1	-0.4	-1.1
DCVC-DC + offline + online	-2.8	-4.9	-4.6	-4.2	-4.1

3. Framework (Proposed DCVC-OOFE)

4. Experiment Results of *Proposed DCVC-OOFE*

Comparison with Baseline and SOTA Methods, BD-Rate(%) Comparison for PSNR.

Online Enhancement