

FEBRUARY 20-27, 2024 | VANCOUVER, CANADA

(Paper ID: 7069)

Offline and Online Optical Flow Enhancement for Deep Video Compression

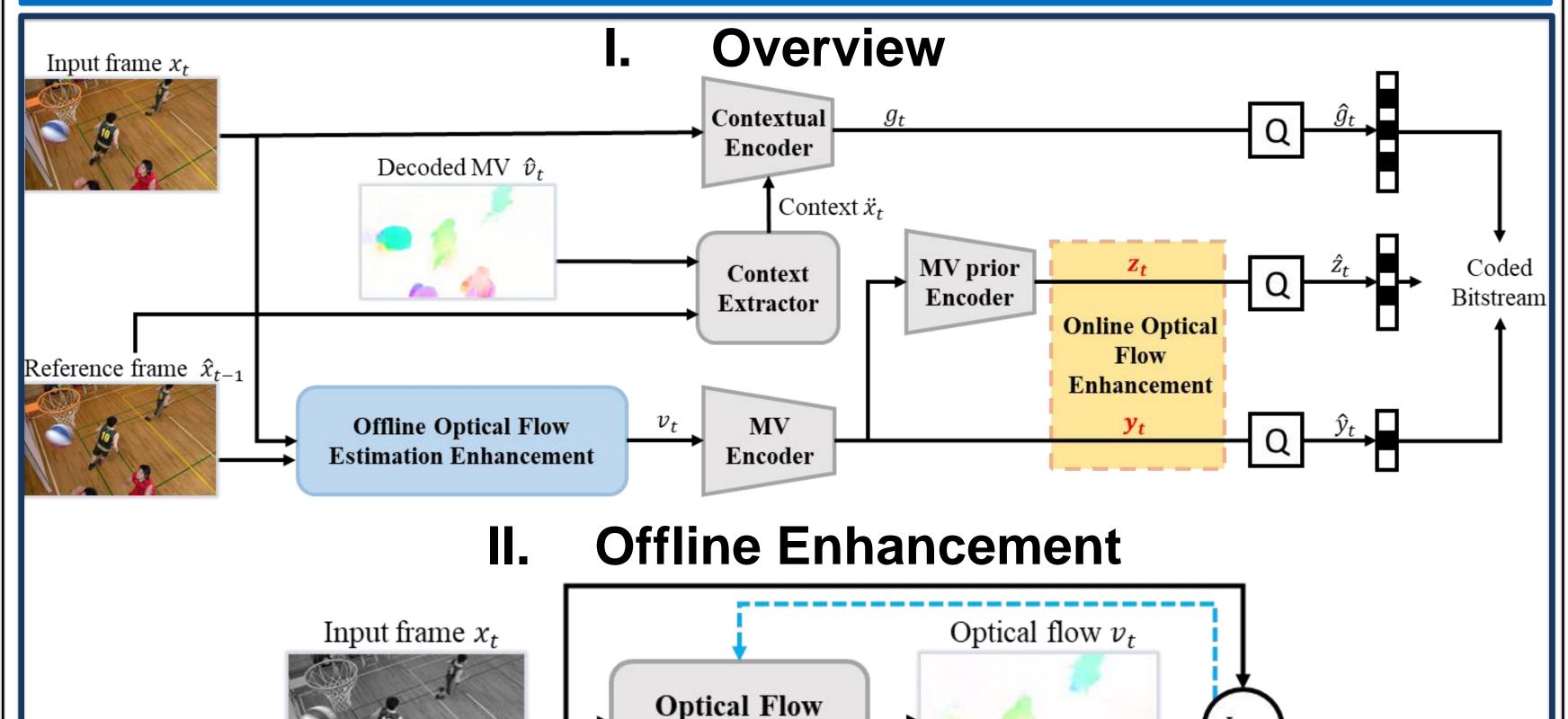
Xihua Sheng Chuanbo Tang Haotian Zhang Zhuoyuan Li Dong Liu University of Science and Technology of China

VTM MV v

1. Contributions

- Proposing offline enhancement on the optical flows with the guidance of MV of VTM.
- Enhancing the adaptivity of the optical flows by online optimizing the latent features of the optical flows according to the contents of different coding sequences in the inference stage.
- Superior compression performance on two state-of-the-art schemes DCVC and DCVC-DC without increasing the model or computational complexity of the decoder side.

2. Motivation and Analysis

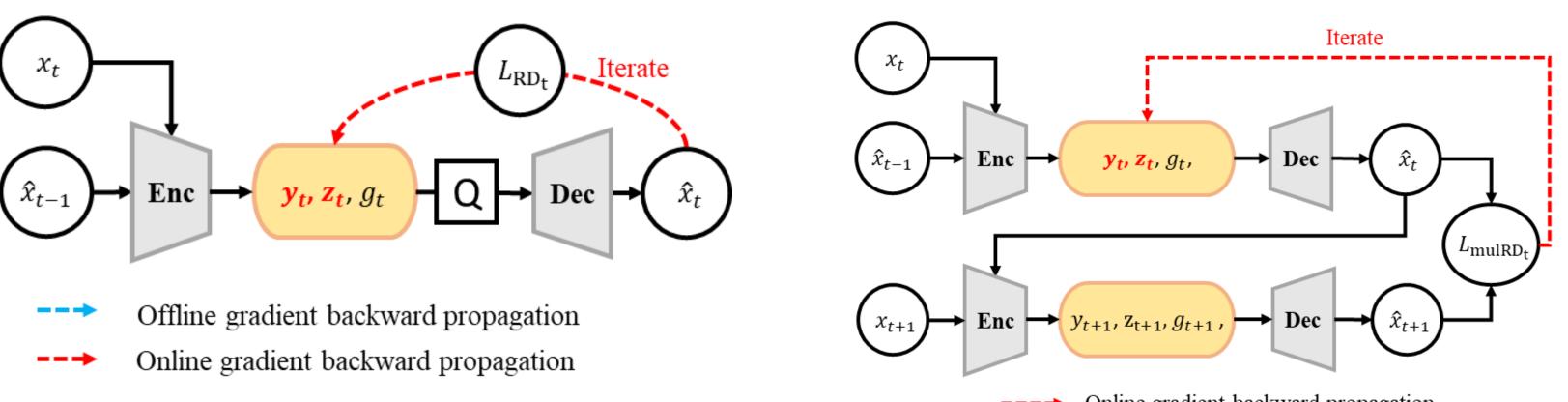

Motivation

- Mainstream deep video compression networks often adopt pretrained optical flow estimation networks as motion estimation module, which may be less suitable for video compression.
- The pre-trained optical flow estimation networks are trained to perform inter-frame prediction as accurately as possible, but the optical flows themselves may cost too many bits to encode.
- The optical flow estimation networks are trained on synthetic data, and may not generalize well enough to real-world videos.
- In the inference stage, the motion information is obtained by a simple forward pass through the motion estimation and encoder.

Analysis

- MV of VTM, searched for the best rate-distortion (RD) performance for each coding sequence, is believed to achieves a better ratedistortion trade-off.
- The online searching strategy in VTM, rate-distortion-optimization (RDO), can achieves content-adaptive video compression.

3. Method


Estimation

Reference frame x_{t-1}

We fine-tune the pre-trained Spynet under the guidance of the extracted MV \overline{v}_t . The loss function including the End Point Error (EPE) loss between optical flows and MV and Mean Squared Error (MSE) loss between the input frame and the warp frame \check{x}_t .

$$L_{ME} = \frac{1}{mn} \sum_{i,j} \sqrt{(v_i - \overline{v}_i)^2 + (v_j - \overline{v}_j)^2} + \lambda_{ME} * d(x_t, \widecheck{x}_t)$$

Online Enhancement

(b) Multi-Frame Online Optimization (a) Single-Frame Online Optimization In the inference stage, we online optimize the latent features of the optical flows with a gradient descent-based algorithm minimizing the RD loss in single-frame level and multi-frame level.

$$\widetilde{L}_{RD_t}^i = \sum_{j=t}^W \alpha_j \left[\lambda d(x_j, \widetilde{x}_j^i) + H(\widetilde{y}_j^i) + H(\widetilde{z}_j^i) + H(\widetilde{g}_j^i) \right]$$

4. Experiment

Comparison with Baseline and SOTA Methods

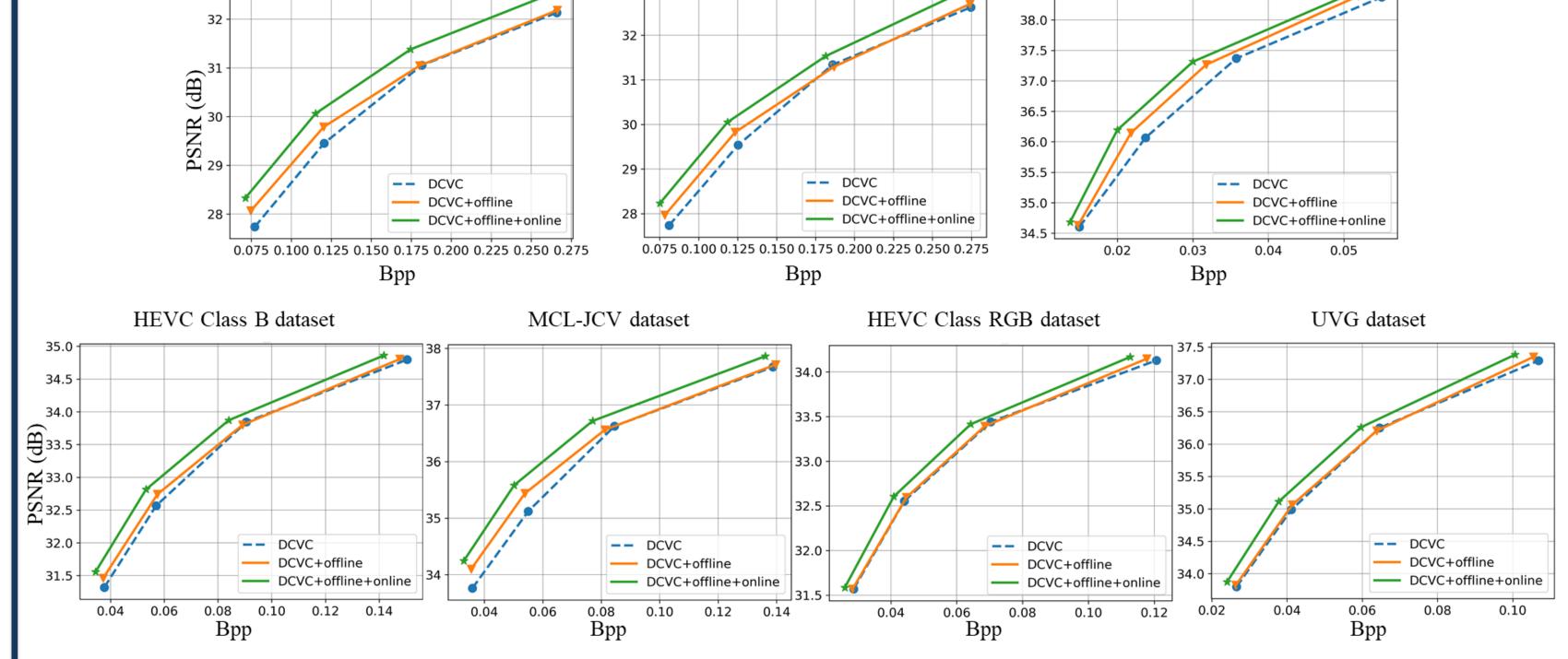
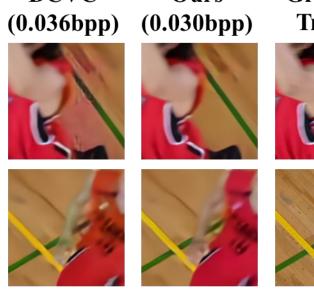



Table 1: Effectiveness of the offline and online enhancemen on SOTA method DCVC-DC. BD-Rate(%) comparison for PSNR. Negative values in BDBR represent the bitrate sav-

	В	C	D	UVG	Average
DCVC-DC	0.0	0.0	0.0	0.0	0.0
DCVC	66.6	79.7	76.7	78.7	75.4
DCVC-DC + offline	-0.7	-1.0	-2.1	-0.4	-1.1
CVC-DC + offline + online	-2.8	-4.9	-4.6	-4.2	-4.1

Ablation Study

Ablation study of Offline Enhancement and Online Enhancement

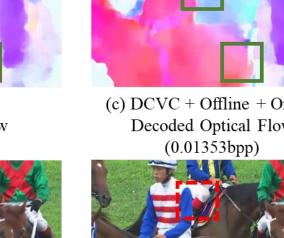
Offline	Online	В	C	D	Е	RGB	UVG	MCL	Average
×	×	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
✓	×	-3.0	-5.9	-4.4	-7.9	-0.7	-1.3	-6.7	-4.3
×	✓	-10.7	-14.3	-11.1	-9.0	-8.5	-10.1	-11.3	-10.7
✓	✓	-12.0	-17.1	-13.1	-15.3	-8.8	-10.5	-16.9	-13.4

Ablation Study of Online updating Times

ш							
Ш	U	C	D	$ENC_T C(s)$	$DEC_T C(s)$	$ENC_T D(s)$	DEC_T l
Ш	0	0.0	0.0	2.71	6.94	0.70	1.91
Ш	100	-6.1	-5.1	28.15	6.84	10.42	1.90
Ш	500	-9.6	-7.9	132.78	6.95	48.99	1.87
Ш	1000	-10.8	-8.6	269.20	6.73	92.58	1.89
Ш	1500	-11.2	-8.7	388.73	6.86	141.03	1.91
Ш	2000	-11.5	-9.1	530.10	6.84	190.64	1.89
Ш	2500	-11.6	-9.2	674.54	6.89	239.05	1.88
		500 1000 1500 2000	100 -6.1 500 -9.6 1000 -10.8 1500 -11.2 2000 -11.5	100 -6.1 -5.1 500 -9.6 -7.9 1000 -10.8 -8.6 1500 -11.2 -8.7 2000 -11.5 -9.1	100 -6.1 -5.1 28.15 500 -9.6 -7.9 132.78 1000 -10.8 -8.6 269.20 1500 -11.2 -8.7 388.73 2000 -11.5 -9.1 530.10	0 0.0 0.0 2.71 6.94 100 -6.1 -5.1 28.15 6.84 500 -9.6 -7.9 132.78 6.95 1000 -10.8 -8.6 269.20 6.73 1500 -11.2 -8.7 388.73 6.86 2000 -11.5 -9.1 530.10 6.84	0 0.0 0.0 2.71 6.94 0.70 100 -6.1 -5.1 28.15 6.84 10.42 500 -9.6 -7.9 132.78 6.95 48.99 1000 -10.8 -8.6 269.20 6.73 92.58 1500 -11.2 -8.7 388.73 6.86 141.03 2000 -11.5 -9.1 530.10 6.84 190.64

-0.8 -0.8 2706.39

Ablation Study of Online updating Frames


546.99

683.04

874.56

(g) Raw Frame