

(Paper ID: 7069)

Offline and Online Optical Flow Enhancement for Deep Video Compression

Chuanbo Tang, Xihua Sheng, Zhuoyuan Li, Haotian Zhang, Li Li, Dong Liu

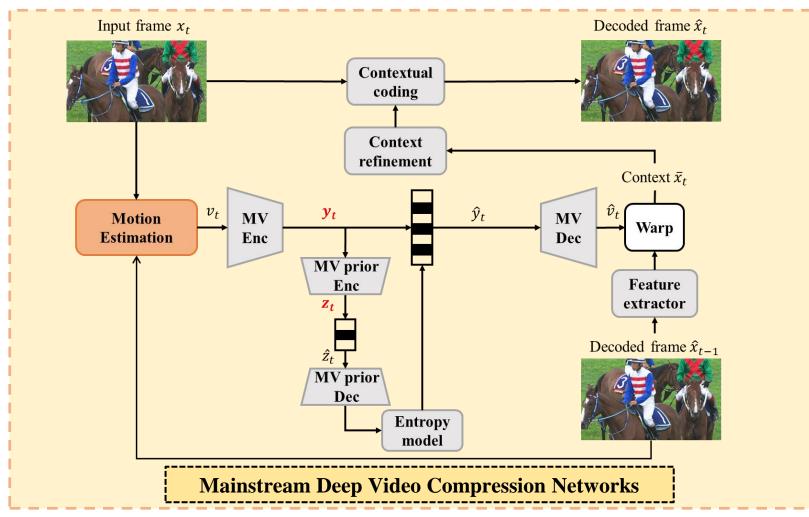
cbtang@mail.ustc.edu.cn

University of Science and Technology of China (USTC)

The 38th Annual AAAI Conference on Artificial Intelligence FEBRUARY 20-27, 2024 | VANCOUVER, CAMADA

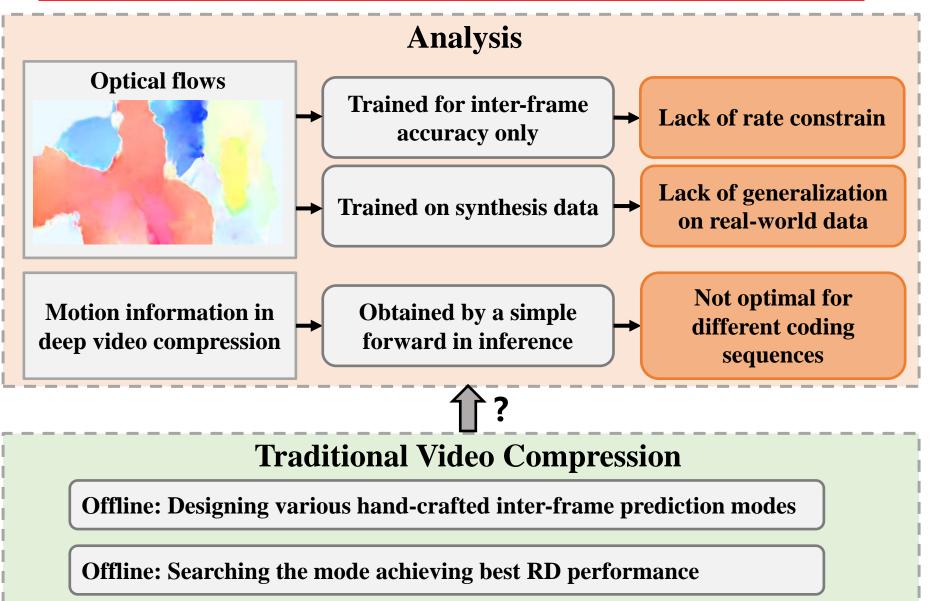
- Background
- Method
- Results
- Conclusion

The 38th Annual AAAI Conference on Artificial Intelligence FEBRUARY 20-27, 2024 | VANCOUVER, CANADA


- Method
- **Results**
- Conclusion

Background

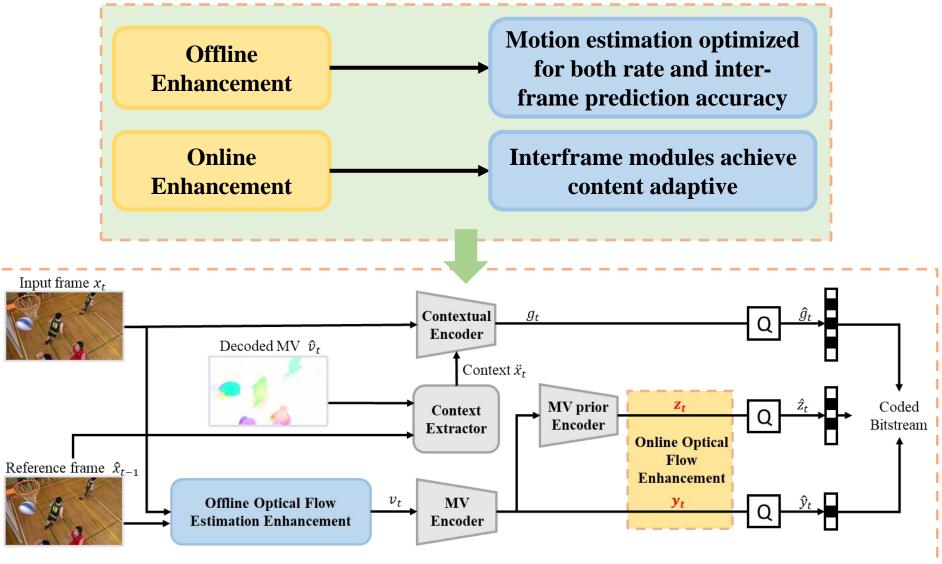
I. ME: pre-trained optical flow estimation networkII. Motion information is obtained by a simple forward



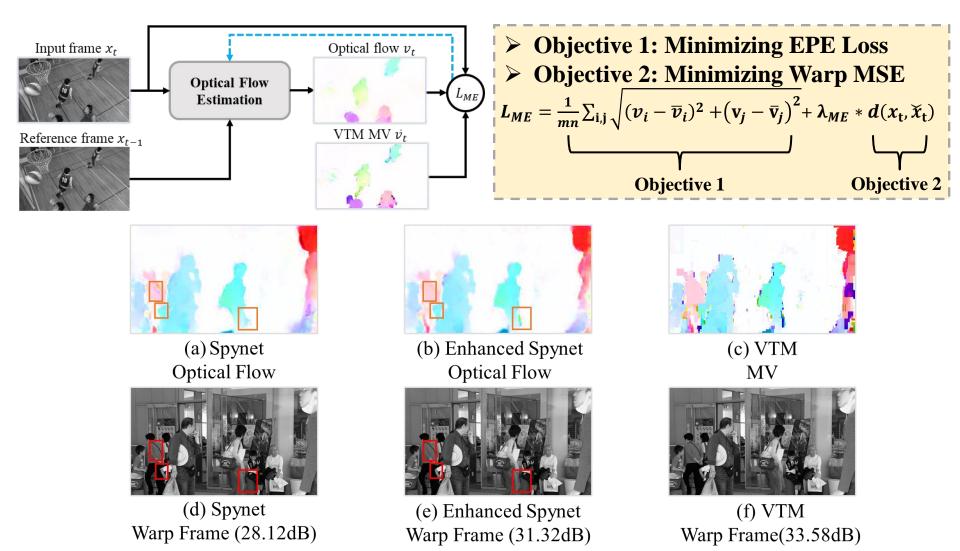
Background

The 38th Annual AAAI Conference on Artificial Intelligence

- Method
- **Results**
- Conclusion


Method

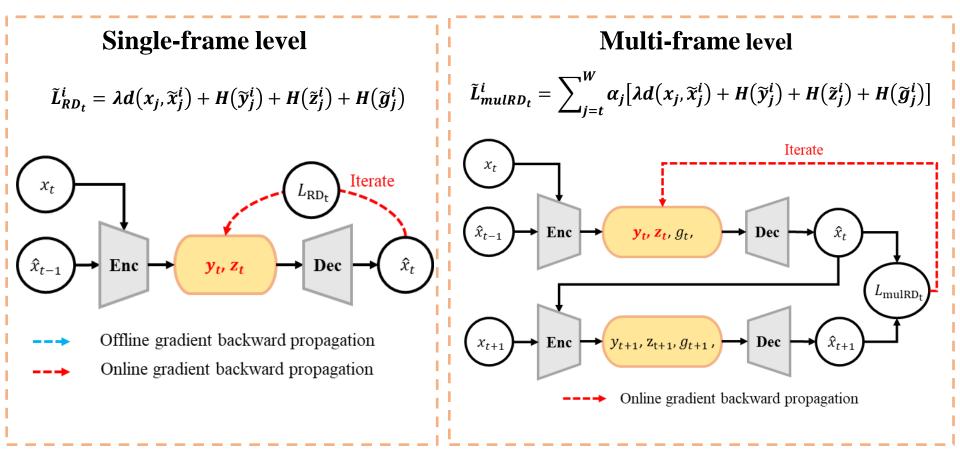
Offline and Online Optical Flow Enhancement:



Method

Offline Enhancement:

> Finetuning the pre-trained Spynet supervise by VTM MV \overline{v}_t

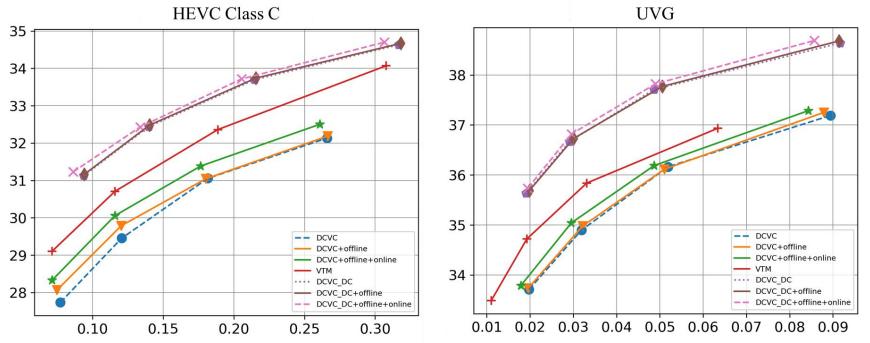

Method

Online Enhancement:

Online Updating the latent features of the optical flows with a gradient descent-based algorithm.

The 38th Annual AAAI Conference on Artificial Intelligence

- Background
- Method
- **Results**
- Conclusion


Based on DCVC [1]:

> Offline enhancement: **4.3%** bitrate saving

> Offline and Online enhancement: **13.4%** bitrate saving **Based on DCVC-DC [2]:**

> Offline enhancement: **1.1%** bitrate saving

> Offline and Online enhancement: **4.1%** bitrate saving

[1] Li J, Li B, Lu Y. Deep contextual video compression[J]. Advances in Neural Information Processing Systems, 2021, 34: 18114-18125. [2] Li J, Li B, Lu Y. Neural video compression with diverse contexts[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 22616-22626.

Subjective Results of Reconstructed Frames:

> Higher quality reconstruction using fewer bits than DCVC

Frame No.23 BasketballDrill 832×480	DCVC (0.036bpp)	Ours (0.030bpp)	Ground Truth
	(Just or bb)		R
	λ=256 (28.75dB)	λ=256 (29.71dB)	
Frame No.22 BasketballPass_416×240	DCVC (0.027bpp)	Ours (0.023bpp)	Ground Truth
			- Solution
	2		1
	λ=256	λ=256	

(29.51 dB)

(28.94dB)

Effectiveness of the Offline and Online Enhancement on DCVC-DC


	В	С	D	UVG	Average
DCVC-DC	0.0	0.0	0.0	0.0	0.0
DCVC	66.6	79.7	76.7	78.7	75.4
DCVC-DC + offline	-0.7	-1.0	-2.1	-0.4	-1.1
DCVC-DC + offline + online	-2.8	-4.9	-4.6	-4.2	-4.1

Based on DCVC:

- ➤ Offline: 4.3% bitrate saving
- > Online: 10.7% bitrate saving
- > Offline and Online: 13.4% bitrate saving

Ablation study of Offline and Online Enhancement on DCVC									
Offline	Online	В	С	D	Е	RGB	UVG	MCL	Average
X	X	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
~	X	-3.0	-5.9	-4.4	-7.9	-0.7	-1.3	-6.7	-4.3
X	~	-10.7	-14.3	-11.1	-9.0	-8.5	-10.1	-11.3	-10.7
~	~	-12.0	-17.1	-13.1	-15.3	-8.8	-10.5	-16.9	-13.4

The 38th Annual AAAI Conference on Artificial Intelligence

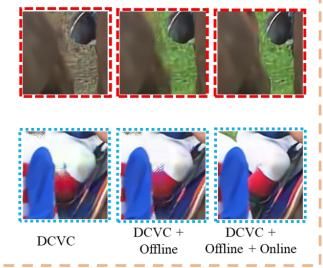
Subjective Results of decoded flows and enhanced flows on DCVC:

(a) DCVC Decoded Optical Flow (0.01473bpp)

(d) DCVC Warp Frame (24.41dB)

(b) DCVC + Offline Decoded Optical Flow (0.01406bpp)

(e) DCVC + Offline Warp Frame (24.98dB)


(c) DCVC + Offline + Online Decoded Optical Flow (0.01353bpp)

(f) DCVC + Offline + Online Warp Frame (25.15dB)

(g) Raw Frame

Based on DCVC with Offline Enhancement:

 \geq Rate, Distortion, and Encoding Time Tradeoff: U = 1500

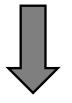
Ablation study of Offline Updating times U								
U	С	D	ENC _T C(s)	DEC _T C(s)	ENC _T D(s)	DEC _T D(s)		
0	0.0	0.0	2.71	6.94	0.70	1.91		
100	-6.1	-5.1	28.15	6.84	10.42	1.90		
500	-9.6	-7.9	132.78	6.95	48.99	1.87		
1000	-10.8	-8.6	269.20	6.73	92.58	1.89		
1500	-11.2	-8.7	388.73	6.86	141.03	1.91		
2000	-11.5	-9.1	530.10	6.84	190.64	1.89		
2500	-11.6	-9.2	674.54	6.89	239.05	1.88		

Based on DCVC with Offline and Offline Enhancement:

 \triangleright Rate, Distortion, and Encoding Time Tradeoff: W = 2

Ablation study of number of frame W in the online enhancement									
W	С	D	$ENC_T C(s)$	$DEC_T C(s)$	$ENC_T D(s)$	$DEC_T D(s)$			
2	0.0	0.0	518.25	6.84	187.82	1.89			
3	-0.5	-0.4	1631.35	6.84	546.99	1.88			
4	-0.7	-0.7	2187.58	6.82	683.04	1.88			
5	-0.8	-0.8	2706.39	6.87	874.56	1.86			

The 38th Annual AAAI Conference on Artificial Intelligence FEBRUARY 20-27, 2024 | VANCOUVER, CANADA


- Background
- Method
- Results
- Conclusion

Conclusion

Plug-and-Play Mechanism for Deep Video Compression
SOTA Performance

Future:

- > Better motion information supervision
- Better balance between the RD performance and encoding complexity
 - >

Thank you!

Chuanbo Tang

cbtang@mail.ustc.edu.cn

University of Science and Technology of China (USTC)