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Abstract

Transformer-based networks have set new benchmarks in
light field super-resolution (SR), but adapting them to capture
both global and local spatial-angular correlations efficiently
remains challenging. Moreover, many methods fail to account
for geometric details like occlusions, leading to performance
drops. To tackle these issues, we introduce OHT. This hy-
brid network leverages occlusion maps through an occlusion-
embedded mix layer. It combines the strengths of convolu-
tional networks and Transformers via spatial-angular sepa-
rable convolution (SASep-Conv) and angular self-attention
(ASA). SASep-Conv offers a lightweight alternative to 3D
convolution for capturing spatial-angular correlations, while
the ASA mechanism applies 3D self-attention across the an-
gular dimension. These designs allow OHT to capture global
angular correlations effectively. Extensive experiments on
multiple datasets demonstrate OHT’s superior performance.

Introduction
The 4D light field, capturing both angular and spatial in-
formation, has become increasingly vital in computer vision
(Wu et al. 2017). Commercial light field cameras utilize a
micro-lens array in front of the sensor, leading to a trade-
off between angular and spatial resolutions (Ng et al. 2005;
Levin, Freeman, and Durand 2008; Sheng et al. 2022). This
limited spatial resolution constrains practical applications,
making light field super-resolution (SR) a critical research
focus. Since the advent of light field cameras, SR has gar-
nered significant attention (Raj et al. 2016; Xiao et al. 2023b,
2021).

With the rise of deep learning, convolutional neural net-
work (CNN) based methods have shown promising perfor-
mance for light field SR, surpassing classic non-learning-
based methods with notable gains (Alain and Smolic 2018;
Liang and Ramamoorthi 2015). To leverage complementary
information from different views, recent CNNs employ var-
ious mechanisms: adjacent-view combination (Yoon et al.
2017), view-stack integration (Zhang, Lin, and Sheng 2019;
Jin et al. 2020; Zhang, Chang, and Lin 2021), bidirectional
recurrent fusion (Wang et al. 2018), spatial-angular disen-
tanglement (Cheng, Liu, and Xiong 2022; Liang et al. 2022;
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Wang et al. 2022c; Yeung et al. 2018), 4D convolutions
(Meng et al. 2019), and data augmentation strategy (Xiao
et al. 2023b; Mi and Yang 2024). However, these methods
still fail to fully explore the global and local spatial-angular
correlations inherent in light fields.

Starting from natural language processing (Ashish 2017),
Transformer architectures (Dosovitskiy et al. 2020) have
been applied to vision tasks such as color image restora-
tion (Liang et al. 2021) and light field SR (Cong et al.
2023; Wang et al. 2022a; Liang et al. 2022, 2023). Lever-
aging multi-head self-attention, these methods excel in cap-
turing non-local similarities and long-range dependencies,
surpassing CNN-based approaches. However, their applica-
tion to light field SR remains sub-optimal due to quadratic
complexities or disruption of angular dependencies. Light
fields exhibit fixed structures, such as relative intensity cor-
relations across views, which are often overlooked by exist-
ing transformer-based approaches. Directly applying these
methods with accounting for such structures is appropriate.
Moreover, many existing methods overlook crucial geomet-
ric information, such as occlusions in light fields, leading
to significant errors and suboptimal results (as illustrated
in Figure 1). This oversight can lead to sub-optimal perfor-
mance, especially in scenarios where occlusions need accu-
rate handling in light field SR tasks.

In this paper, we propose an Occlusion-Embedded Hybrid
Transformer (OHT) that effectively integrates the local
spatial-angular inductive bias of convolution and the long-
range spatial-angular dependency modeling ability of Trans-
formers. Unlike previous light field SR methods, OHT
explicitly utilizes occlusion maps. Specifically, we obtain
occlusion maps for each view by leveraging the photo-
consistency constraint based on the coarse estimated dis-
parity map using OACCNet (Wang et al. 2022b) from low-
resolution (LR) observations (as shown in Figure 1. These
occlusion maps represent the importance of pixels from dif-
ferent views, helping to mitigate the impact of occluded
pixels. We incorporate this information into the SR pro-
cess using the occlusion-embedded mix layer. In addition,
OHT incorporates several key designs: (1) We introduce a
spatial-angular separable convolution (SASep-Conv), which
extracts spatial-angular features more effectively than previ-
ous methods like 2D convolutions (Jin et al. 2020), 3D con-
volutions (Tran, Berberich, and Simon 2022), 4D convolu-
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Figure 1: Examples of light field SR. We sequentially
present images from angle coordinates (0,0), (0,2), (0,4),
(2,0), (2,2), (2,4), (4,0), (4,2), and (4,4). From left to right:
error maps of DistgSSR, error maps of DET, error maps of
OHT-B (Ours), and the generated occlusion maps.

tions (Meng et al. 2019) and separable convolutions (Cheng,
Liu, and Xiong 2022). (2) We process the extracted features
with an angular self-attention (ASA) mechanism to lever-
age the enhanced local spatial-angular inductive bias. ASA
mechanism performs global self-attention across the angular
space, selectively aggregating information across different
angular views. This approach enriches our model with ro-
bust capabilities to capture long-range angular correlations,
mitigating the limitations of 2D angular self-attention and
the quadratic complexity of spatial attention methods. Con-
sidering the importance of multi-view information from the
angular dimension, this design ensures that the model effec-
tively leverages this data for superior SR performance. (3)
We introduce a convolutional feed-forward layer (CFFL) to
further enhance aggregated features from informative angu-
lar regions. These designs address the aforementioned chal-
lenges of light field SR, effectively leveraging both local
spatial-angular details and global angular correlations for
superior performance and adaptability. As illustrated in Fig-
ure 1, OHT can generate results with fewer errors. Extensive
experiments on benchmark datasets show that our OHT can
achieve superior performance.

The contributions of this work are summarized as follows:
(1) We present OHT, a hybrid spatial-angular transformer
that effectively captures local spatial-angular features and
long-range global angular correlations. (2) We introduce
ASA, modeling long-range angular correlations along angu-
lar space instead of previous 2D spatial/channel dimensions.
(3) We propose CFFL to drive the model to focus on more
informative regions and SASep-Conv to extract meaningful
spatial-angular features.

Related Work
Light field image super-resolution. Light field image SR is
a long-standing, ill-posed problem. Traditional non-learning
methods rely on geometric (Liang and Ramamoorthi 2015;
Rossi and Frossard 2017) and mathematical (Alain and

Smolic 2018) modeling of the 4D light field structure for
super-resolution through projection and optimization tech-
niques. Deep learning methods have recently become dom-
inant due to their superior performance. Yoon et al. (Yoon
et al. 2017) introduce LFCNN, the first light field SR net-
work, adapting the SRCNN architecture (Dong et al. 2014)
with multiple channels. Subsequent methods exploit across-
view redundancy in the light field, either explicitly (Cheng,
Xiong, and Liu 2019; Jin et al. 2020; Wang et al. 2018;
Zhang, Lin, and Sheng 2019) or implicitly (Meng et al.
2019; Wang et al. 2020; Yeung et al. 2018; Yuan, Cao, and
Su 2018; Wang et al. 2022c; Van Duong et al. 2023b,a; Liu,
Yue, and Yang 2024; Xiao et al. 2023a; Xiao, Cheng, and
Xiong 2023; Xiao, Shou, and Xiong 2024; Xiao and Xiong
2024; Xiao et al. 2024; Tang et al. 2024; Li et al. 2024c,a,b).
Transformer-based methods have recently shown effective-
ness in light field SR (Liang et al. 2022; Wang et al. 2022a;
Liang et al. 2023; Cong et al. 2023). There is also a trend to-
ward designing deeper and wider networks (Jin et al. 2023;
Van Duong et al. 2023b) to improve light field SR accuracy.
Recently, novel architectures such as diffusion-based (Gao
et al. 2024; Chao et al. 2023) and Mamba-based (Gao, Xiao,
and Xiong 2024; Lu et al. 2024) methods have demonstrated
their effectiveness in the light field SR task.
Vision Transformers. Transformer (Ashish 2017), origi-
nally introduced as a parallel and purely attention-based al-
ternative to recurrent neural networks (Chung et al. 2014) in
natural language processing, has been successfully adapted
for high-level vision tasks (Dosovitskiy et al. 2020). Rec-
ognizing its powerful representation abilities, recent works
have also applied transformers to low-level tasks like natu-
ral image SR (Chen et al. 2023) and image denoising (Tian
et al. 2024). One key challenge in these methods is the
quadratic complexity of the self-attention (SA) mechanism.
To address this, SwinIR (Liang et al. 2021) adapts the Swin
Transformer (Liu et al. 2021) by replacing global attention
with a more efficient shift-window-based attention. Simi-
larly, Uformer (Wang et al. 2022d) uses attention over non-
overlapping patches and adopts a U-Net architecture for in-
creased efficiency. While Transformer-based methods have
shown effectiveness in light field SR (Liang et al. 2022;
Wang et al. 2022a; Liang et al. 2023; Cong et al. 2023),
they still face challenges in capturing both global and local
spatial-angular correlations efficiently and flexibly. More-
over, these methods often neglect geometric details, such as
occlusions, unique to light fields. Our OHT addresses these
challenges by introducing SA-SepConv and AngSA, which
effectively extract angular-correlated features. OHT ensures
improved performance for light field SR.

Occlusion-Embedded Hybrid Transformer
The proposed OHT aims to recover a clean and sharp high-
resolution (HR) light field Isr ∈ RαH×αW×U×V given LR
observation I lr ∈ RH×W×U×V

Isr = OHT(I lr), (1)

where H and W are spatial dimensions, U and V are angular
dimensions, and α represents the magnification factor (i.e.,
2 and 4 in our experiments).
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Figure 2: An overview of the proposed OHT. OHT is a hybrid network that leverages occlusion maps through an occlusion-
embedded mix layer and combines the strengths of convolutional networks and Transformers via SASep-Conv and ASA.

The structure of OHT is shown in Figure 2. Given LR ob-
servation I lr, we first feed I lr to the occlusion map gener-
ator NOG(·) and generate the occlusion maps M . We then
feed I lr and M to initial feature extractors NLF

Init(·) and
NO

Init(·). Both feature extractors do not share weights and
are composed of three 3× 3 convolutions with LeakyReLU,
following the design used in most existing works (Liang
et al. 2023, 2022; Wang et al. 2022c). The extracted initial
features F 0 and FM are fed to the occlusion-embedded mix
layer Nmix(·), generating the occlusion-embedded feature
representation F 1 ∈ RH×W×U×V×C

F 1 = Nmix(NLF
Init(I

sr),NO
Init(M)), (2)

where C denotes the channel number. We set C to 48, 56,
and 64, obtaining the tiny, small, and base versions of OHT,
abbreviated as OHT-T, OHT-S, and OHT-B. Then, F 1 is fed
to N hybrid blocks, generating the HR feature representa-
tion FN . The hybrid blocks in our model are implemented
following the design of EPIT (Liang et al. 2023), ensuring
efficient spatial-angular feature learning. Finally, FN is fed
to the reconstructor NRec(·). We obtain the super-resolved
light field Isr by adding the upsampled result of I lr (i.e.,
Ibi) to the output of NRec

Isr = NRec(F
N + F 1) + Ibi. (3)

Occlusion Map Generator
Existing methods perform poorly in regions with occlu-
sions, necessitating the calculation of an occlusion mask for
each view to generate reasonable guidance for light field
SR. However, accurate occlusion estimation is a non-trivial
task. Inspired by unsupervised light field disparity estima-
tion methods (Peng et al. 2020, 2018; Jin and Hou 2022;
Wang et al. 2022b), we utilize a parameter-free approach to
deduce the occlusion mask for each view.

Specifically, for regions with occlusions, a scene point
visible in the center view may be unavailable in surrounding
views, and the occluded pixels in these surrounding views

cannot find their corresponding pixels in the center view.
Consequently, the fine-grained occlusion mask can be cal-
culated based on the photometric consistency prior. Denote
the disparity map of the center view as Dc. The surrounding
views are first warped to the center view as follows

Ik→c = WDc
k→c (Ik) , k = 1, 2, · · · , UV, (4)

where WDc
k→c denotes the warping operation that projects

the k-th view Ik to the center view Ic. Assuming the dis-
parity map Dc is accurate, the projected view Ik→c should
have identical values to the center view Ic at non-occluded
regions. Therefore, we use the absolute residuals between
Ik→c and Ic to measure photometric consistency

Ires
k→c = |Ik→c − Ic| . (5)

Finally, the occlusion mask of the k-th view is obtained by
re-mapping Ires

k→c to [0, 1]

Mk = |1− Ires
k→c|

q
, (6)

where q is a scalar that controls the decaying rate. We em-
pirically set q = 2 to achieve a good trade-off between oc-
clusion awareness and noise robustness.

OACCNet constructs matching costs and handles occlu-
sions by modulating input pixels. We adapt its structure for
disparity estimation using a 5×5 angular resolution light
field. With this modified OACCNet, we estimate disparity
maps from the LR light field to generate occlusion maps. For
more details, please refer to the supplementary document.

Occlusion-Embedded Mix Layer
Occlusions are prevalent in light fields and can deteriorate
angular consistency. Proper utilization of occlusion infor-
mation is essential. Existing methods often overlook the ef-
fect of occlusion during reconstruction, potentially leading
to sub-optimal results. Therefore, in this paper, we propose
to utilize occlusion maps to address these issues explicitly.
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Figure 3: Structures of the proposed SASep-Conv and ASA.

The first step to fully leverage occlusion maps is to in-
tegrate occlusion information with light field data for sub-
sequent reconstruction. We introduce a simple yet effective
Occlusion-Embedded Mix Layer for this process. Specifi-
cally, we concatenate F 0 and FM along the feature dimen-
sion and pass them through the Occlusion-Embedded Mix
Layer, which consists of four Conv3D layers, to obtain the
fused feature F 0.

Hybrid Transformer
In this section, we present a Hybrid Transformer, introduc-
ing several key designs, including (i) the SASep-Conv as
an alternative to 3D convolution, (ii) the ASA, and (iii) the
CFFL to enhance aggregated features.
SASep-Conv. Modern light field cameras capture high-
dimensional images with numerous views. To process these
complex data, 2D convolutions (Jin et al. 2020), 3D convo-
lutions (Tran, Berberich, and Simon 2022) and 4D convo-
lutions (Meng et al. 2019) have been employed. However,
their performance and efficiency are constrained by the lo-
cal receptive field and heavy computational demands. We
introduce SASep-Conv, a lightweight and powerful variant
of Conv3D that applies angular and spatial convolutions in
parallel. This design preserves angular flexibility and aug-
ments a hybrid Transformer with inductive biases without
splitting the light field into separate components. This en-
ables more efficient processing and improved representation
learning across both the angular and spatial domains.

Standard Conv3D effectively captures spectral-spatial
correlations but introduces significant computational over-
head due to its large parameter count. To address this, we
propose SASep-Conv, which decouples Conv3D into two
parallel branches that independently process spatial and an-
gular dimensions. We first reshape the feature map from
H ×W × U × V × C to H ×W ×A× C, where A =
U × V . The spatial branch utilizes 2D filters per view,
while the angular branch employs a 1 × 1 projection to
capture angular correlations across all views. The final fea-
tures are obtained by combining the outputs of both branches
through element-wise addition. Unlike traditional 2D sepa-
rable Conv for 3D data, SASep-Conv is spatial-angular sep-
arable rather than spatial-channel or angular-channel sepa-

rable, making it effective for angular correlation extraction.
Angular self-attention. While spatial self-attention (Liang
et al. 2021) enhances model performance by capturing spa-
tial interactions and non-local similarities, it is computation-
ally intensive and less suited for light field images. We in-
troduce ASA, an efficient 3D self-attention mechanism that
operates along the angular dimension rather than the spatial
or channel dimensions. Leveraging the inherent angular cor-
relations in light field data, the ASA mechanism achieves
linear complexity and excels in long-range relation model-
ing. This design significantly enhances the model’s ability to
identify informative regions for SR, outperforming existing
methods (Cong et al. 2023).

The proposed ASA mechanism operates on 3D feature
maps generated by the preceding SASep-Conv, denoted as
X ∈ RH×W×D×C . Unlike the traditional attention mecha-
nism (Zamir et al. 2022), which applies attention along the
channel dimension C, our ASA mechanism performs 3D at-
tention along the angular dimension A, effectively capturing
angular correlations within light field images.

To compute the attention, we first derive the query, key,
and value from X. However, unlike conventional atten-
tion mechanisms (Ashish 2017), where all three compo-
nents undergo linear projection, in ASA, only the value
V ∈ RH×W×A×C is linearly projected from X. To simplify
the process, we omit intermediate operations and instead ap-
ply global average pooling to X along the spatial dimen-
sions, directly obtaining the global features for each angular
band, represented as Q,K ∈ RA×C . This pooling strategy is
both parameter-free and computationally efficient, avoiding
the more considerable computational costs associated with
the traditional reshape method used in prior works (Zamir
et al. 2022).

The transposed attention map A, with dimensions RD×D,
is then computed via the dot-product of key K and query
Q, followed by softmax normalization. The final attention
output is obtained by multiplying this attention map with
the value V, allowing the model to dynamically focus on
the most discriminative features across all views

Attention(Q,K,V) = V · Softmax(K ·Q), (7)

X̂ = W ·Attention(Q,K,V) +X. (8)
To further refine the features, we apply an additional lin-
ear projection W ∈ RC×C on the fused features, followed
by the inclusion of residual connections to stabilize train-
ing. This design effectively leverages the most discrimina-
tive features for each view, enhancing the model’s ability to
process light field images.
Feed-forward layer. Feed-Forward Network (FFN) is one
of the essential parts of Transformer architectures, and it has
been reported that it might be the key to constructing the
meta structure of transformer than SA (Yu et al. 2023). Tra-
ditional FFN (Ashish 2017) processes the output features
from the SA layer with two linear projections and a non-
linear activation between them.

To effectively transform the features, we utilize CFFL,
which consists of three convolutional layers and two
LeakyReLU activation layers in between. This design en-
ables the module to efficiently process and adaptively

8703



Method ×2 SR ×4 SR

EPFL HCInew HCIold INRIA STFgantry EPFL HCInew HCIold INRIA STFgantry
Bicubic 29.74/.9376 31.89/.9356 37.69/.9785 31.33/.9577 31.06/.9498 25.14/.8324 27.61/.8517 32.42/.9344 26.82/.8867 25.93/.8452
VDSR 32.50/.9598 34.37/.9561 40.61/.9867 34.43/,9741 35.54/.9789 27.25/.8777 29.31/.8823 34.81/.9515 29.19/.9204 28.51/.9009
EDSR 33.09/.9629 34.83/.9592 41.01/.9874 34.97/.9764 36.29/.9818 27.84/.8854 29.60/.8869 35.18/.9536 29.66/.9257 28.70/.9072
RCAN 33.16/.9634 34.98/.9603 41.05/.9875 35.01/.9769 36.33/.9831 27.88/.8863 29.63/.8886 35.20/.9548 29.76/.9276 28.90/.9131
ResLF 33.62/.9706 36.69/.9739 43.42/.9932 35.39/.9804 38.36/.9904 28.27/.9035 30.73/.9107 36.71/.9682 30.34/.9412 30.19/.9372

LFSSR 33.68/.9744 36.81/.9749 43.81/.9938 35.28/.9832 37.95/.9898 28.27/.9118 30.72/.9145 36.70/.9696 30.31/.9467 30.15/.9426
LF-ATO 34.27/.9757 37.24/.9767 44.20/.9942 36.15/.9842 39.64/.9929 28.52/.9115 30.88/.9135 37.00/.9699 30.71/.9484 30.61/.9430

LF-InterNet 34.14/.9760 37.28/.9763 44.45/.9946 35.80/.9843 38.72/.9909 28.67/.9162 30.98/.9161 37.11/.9716 30.64/.9491 30.53/.9409
DFNet 34.44/.9755 37.44/.9773 44.23/.9941 36.36/.9840 39.61/.9926 28.77/.9165 31.23/.9196 37.32/.9718 30.83/.9503 31.15/.9494

MEG-Net 34.30/.9773 37.42/.9777 44.08/.9942 36.09/.9849 38.77/.9915 28.74/.9160 31.10/.9177 37.28/.9716 30.66/.9490 30.77/.9453
LF-IINet 34.68/.9773 37.74/.9790 44.84/.9948 36.57/.9853 39.86/.9936 29.11/.9188 31.36/.9208 37.62/.9734 31.08/.9515 31.21/.9502

DPT 34.48/.9758 37.35/.9771 44.31/.9943 36.40/.9843 39.52/.9926 28.93/.9170 31.19/.9188 37.39/.9721 30.96/.9503 31.14/.9488
LFT 34.80/.9781 37.84/.9791 44.52/.9945 36.59/.9855 40.51/.9941 29.25/.9210 31.46/.9218 37.63/.9735 31.20/.9524 31.86/.9548

DistgSSR 34.81/.9787 37.96/.9796 44.94/.9949 36.59/.9859 40.40/.9942 28.99/.9195 31.38/.9217 37.56/.9732 30.99/.9519 31.65/.9535
LFSAV 34.62/.9772 37.43/.9776 44.22/.9942 36.36/.9849 38.69/.9914 29.37/.9223 31.45/.9217 37.50/.9721 31.27/.9531 31.36/.9505

EPIT 34.83/.9775 38.23/.9810 45.08/.9949 36.67/.9853 42.17/.9957 29.34/.9197 31.51/.9231 37.68/.9737 31.37/.9526 32.18/.9571
DET 35.26/.9797 38.31/.9807 44.99/.9950 36.95/.9864 41.76/.9955 29.47/.9230 31.56/.9235 37.84/.9744 31.39/.9534 32.14/.9573

OHT-T 34.89/.9789 38.03/.9800 44.86/.9948 36.48/.9857 40.28/.9940 29.17/.9181 31.30/.9202 37.35/.9720 31.15/.9504 31.33/.9511
OHT-S 35.16/.9797 38.21/.9805 44.98/.9949 36.83/.9861 40.99/.9949 29.25/.9197 31.42/.9216 37.48/.9727 31.16/.9514 31.51/.9525
OHT-B 35.66/.9829 38.50/.9814 45.04/.9950 37.10/.9877 41.40/.9953 29.45/.9254 31.79/.9263 37.90/.9745 31.36/.9550 32.24/.9590

Table 1: Quantitative comparison of different light field SR methods in terms of PSNR (dB) and SSIM on benchmark datasets.
We mark the best, the second, and the third results in bold, underline, and italic underlined, respectively.

Method Parameters PSNR SSIM

×2 SR ×4 SR ×2 SR ×4 SR ×2 SR ×4 SR
ResLF 6.35 6.79 37.49 31.24 .9817 .9321

LFSSR 0.81 1.61 37.50 31.52 .9832 .9370
LF-ATO 1.51 1.66 38.31 31.54 .9847 .9373

LF-InterNet 4.80 5.23 38.02 31.61 .9844 .9387
DFnet 3.94 3.99 38.53 31.92 .9854 .9422

MEG-Net 1.69 1.77 38.14 31.72 .9851 .9399
LF-IINet 4.84 4.89 38.76 32.06 .9860 .9429

DPT 3.73 3.78 38.40 31.93 .9848 .9414
LFT 1.11 1.16 38.83 32.27 .9861 .9445

DistgSSR 3.53 3.58 38.94 32.12 .9867 .9439
EPIT 1.42 1.47 39.40 32.40 .9869 .9452
DET 1.59 1.69 39.46 32.48 .9874 .9463

OHT-T 1.28 1.69 38.91 32.06 .9867 .9423
OHT-S 1.74 1.77 39.23 32.17 .9872 .9436
OHT-B 2.26 2.31 39.54 32.55 .9885 .9480

Table 2: Comparison in terms of parameters and average
PSNR/SSIM values for ×2 and ×4 SR.

transform the input features, enhancing their discriminative
power while maintaining computational efficiency.

Experiments
Experimental Settings
Datasets. In line with prior works, we utilize the Basi-
cLFSR benchmark (Wang 2023) for training and evaluat-
ing all methods at ×2 and ×4 scales. This benchmark in-
cludes five light field datasets: HCI-new (Honauer et al.
2016), HCI-old (Wanner, Meister, and Goldluecke 2013),
EPFL (Rerabek and Ebrahimi 2016), INRIA (Le Pendu,
Jiang, and Guillemot 2018), and STFGantry, comprising 144
training scenes and 23 test scenes with diverse contents and
disparities. We extract the central 5×5 views from each light
field for both training and testing.
Training and inference settings. In the training stage, we
crop each view into 32 × 32 or 64 × 64 patches and per-
form ×0.5 or ×0.25 bicubic downsampling to generate LR
patches for ×2 and ×4 SR, respectively. We use PSNR and

SSIM on the Y channel as quantitative metrics for perfor-
mance evaluation. For a dataset with M scenes, we calcu-
late metrics for each scene by averaging the scores of over-
all views and then obtain the dataset score by averaging the
scores over M scenes.
Implementation details. We retrain the light field dispar-
ity estimation model at a 5× 5 angular resolution following
the settings of OACCNet. We then adopt the same training
settings for all SR experiments, using the Xavier initializa-
tion algorithm and the Adam optimizer with β1 = 0.9 and
β2 = 0.999. We set N = 6. The initial learning rate is set to
2.5×10−4 and decreases by a factor of 0.8 every 15 epochs.
The batch size is set to 128. During training, we perform ran-
dom horizontal flipping, vertical flipping, and 90-degree ro-
tation to augment the data. All models are implemented us-
ing the PyTorch framework. An NVIDIA A800 GPU is uti-
lized for training. Specifically, the OHT-T and OHT-S mod-
els are trained from scratch for 75 epochs, while the OHT-B
model is trained for 85 epochs.

Quantitative and Qualitative Comparisons
We compare our method with several baseline methods, in-
cluding 3 single image SR methods (Kim, Lee, and Lee
2016; Lim et al. 2017; Zhang et al. 2018), and light field SR
methods (Zhang, Lin, and Sheng 2019; Yeung et al. 2018;
Wang et al. 2020, 2022c; Cheng, Liu, and Xiong 2022; Liang
et al. 2022; Wang et al. 2022a; Cong et al. 2023; Liang et al.
2023) (see Table 1).
Quantitative results. The quantitative results are shown in
Table 1 and Table 2. OHT-B achieves the highest PSNR and
SSIM values in most cases, indicating superior image qual-
ity after SR. OHT-B uses 2.26M parameters for ×2 SR and
2.31M parameters for ×4 SR, which is more than OHT-T
and OHT-S and baseline methods but still competitive. Com-
pared to Transformer-based methods such as EPIT and DET,
OHT models show competitive performance on most test
sets. For instance, for the task of ×2 SR, OHT-B outper-
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DPT EPIT LFT DET

OHT-T OHT-S OHT-B GT

Figure 4: Qualitative comparison of different methods for ×2 light field SR. Please zoom in for a better view.

DPT EPIT LFT DET

OHT-T OHT-S OHT-B GT

Figure 5: Qualitative comparison of different methods for ×4 light field SR. Please zoom in for a better view.

OHT w/o OHT Occlusion mapOHT-Conv2D

Figure 6: Ablations on the occlusion-embedded mix layer.

forms DET by 0.08 dB in PSNR.
Qualitative Results. We provide visual results on ×2 SR
and ×4 SR in Figure 4 and Figure 5. For example, in the
ISO scene in Fig. 4, OHT successfully generates precise re-
sults, while other baselines tend to generate blurry results
and artifacts. More qualitative results are shown in the sup-
plementary document.

Ablation Study
In this section, we perform ablation studies on ×4 SR to val-
idate the effectiveness of our designs based on OHT-B. We
compare each component by replacing it with alternatives.
When a component is removed, we maintain the parameter
count by adding residual blocks. Due to space limitations,
additional ablation study results and analyses are provided
in the supplementary document.

Model PSNR SSIM
OHT w/o Nmix 32.30 0.9451

Nmix-Add 32.45 0.9459
Nmix-Conv2D 32.48 0.9462

OHT 32.55 0.9480

Table 3: Comparison of different variants of the occlusion-
embedded mix layer.

Model PSNR SSIM
Conv3D 32.41 0.9457

OHT w/o Spa 32.45 0.9458
OHT w/o Ang 32.47 0.9460

OHT 32.55 0.9480

Table 4: Comparison of different variants of SASep-Conv.

Effectiveness of the occlusion-embedded mix layer. Nmix

integrates occlusion information with light field data for sub-
sequent reconstruction. To validate this component, we de-
sign three variants: (1) OHT w/o Nmix, where we remove
Nmix, meaning occlusions are not considered. (2) Nmix-
Add, where we add F 0 and FM before feeding them into
Nmix. (3) Nmix-Conv2D, where we replace the 3D convo-
lution with 2D convolution. The results are shown in Table 3.
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Model PSNR SSIM
Channel Att. 32.39 0.9451

Restormer 32.42 0.9463
LFT 32.46 0.9468

EPIT 32.49 0.9470
OHT 32.55 0.9480

Table 5: Comparison of the angular self-attention.

Model PSNR SSIM
FFN 32.33 0.9455
OHT 32.55 0.9480

Table 6: Comparison of different variants of the convolu-
tional feed-forward layer.

GT OHT w/o Spa OHT

GT OHT w/o Ang OHTGT

Figure 7: Ablations on the SASep-Conv.

The original OHT model outperforms the variant without the
mixing network by 0.25 dB in PSNR and 0.0029 in SSIM,
demonstrating the importance of considering occlusion in-
formation during SR. Our complete OHT, which incorpo-
rates the mixing network with 3D convolutions, yields the
best performance, with a PSNR of 32.55 dB and an SSIM of
0.9480. Figure 6 showcases the visual comparison between
the reconstructed images with and without explicit use of
occlusion maps. It reveals that incorporating occlusion in-
formation in the reconstruction process leads to reduced er-
rors, particularly in areas with heavy occlusions, emphasiz-
ing the importance of considering occlusion maps for en-
hanced light field SR.
Effectiveness of the SASep-Conv. To validate this compo-
nent, we design three variants: (1) Conv3D: a baseline vari-
ant using only 3D convolutions to extract features. (2) OHT
w/o Spa, OHT without the spatial branch. (3) OHT w/o Ang,
OHT without the angular branch. The results are shown in
Table 4. Combining both spatial and angular branches in the
complete OHT results in the best performance, with a PSNR
of 32.55 dB and an SSIM of 0.9480, outperforming Conv3D
by 0.11 dB in PSNR and 0.0025 in SSIM. Figure 8 visu-
ally compares the reconstructed images obtained from OHT
when removing either the spatial or angular branch. When
the spatial branch is removed, noticeable artifacts appear,
whereas eliminating the angular branch results in disconti-
nuities and inconsistencies across different viewpoints.
Effectiveness of the ASA. To validate this component, we
replace ASA with the attention modules listed in Table 4.

(0,0) (0,4)

(4,0) (4,4)

(0,0) (0,4)

(4,0) (4,4)

DistgSSR DET

OHT GT

Feature maps before ASA Feature maps after ASA

(0,0) (0,4)

(4,0) (4,4)

Figure 8: Ablations on the ASA mechanism.

Results in Table 4 suggest that ASA is more effective in cap-
turing the unique characteristics of light fields compared to
other techniques, leading to improved performance in light
field SR. Figure 8 demonstrates the advantages of the ASA.
The upper part of the figure shows that ASA produces angle-
consistent results and effectively extracts useful texture in-
formation and repetitive patterns from different views for
super-resolution. The lower part of the figure reveals that
ASA activates more global features in the feature maps,
highlighting its ability to capture long-range dependencies
and enhance the representation power of the model.
Effectiveness of the CFFL. To evaluate the efficacy of
CFFL, we substitute it with the FFN used in (Ashish 2017).
The results presented in Table 6 indicate that CFFL outper-
forms FFN, demonstrating the superiority of CFFL.

Conclusion
In this paper, we propose a hybrid Transformer network
for light field SR that efficiently captures both global and
local spatial-angular correlations. By incorporating occlu-
sion maps through an occlusion-embedded mix layer and
leveraging SASep-Conv and ASA modules, our approach
effectively preserves geometric details and enhances per-
formance. Experimental results across multiple datasets
demonstrate the superiority of our method over existing ap-
proaches, establishing a new benchmark for light field SR.
Future work will focus on optimizing the model’s complex-
ity and exploring its applications in related tasks like light
field image denoising and reflection removal.
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