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Neural network-based in-loop filtering (NNLF) methods achieve remarkable coding gains 

beyond the capability of advanced video coding standards, which becomes a powerful coding 

tool candidate for future video coding standards. 

Performance: Lop-17.0 kMACs/pixel with -4.61%∼-4.78% in AI , Hop-477.0 kMACs/pixel 
with  -7.79%∼-7.91% in AI

Backbone of NNLF in VVC 
NN-based Exploration Extension (NNVC)

(e.g. JVET-AF0014 , JVET-AF0041 , JVET-AF0043)

Background



Concept
The utilization of deep neural networks (DNN) brings high computational complexity and 

raises high demand of dedicated hardware, which is challenging to apply into general use. 

Deep neural networks (DNN) 
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Resource Limitation: Time complexity, Computational complexity, Energy cost
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Concept

The basic idea of the proposed scheme is to adopt the look-up operation (direct addressing) 

of LUT to replace the inference process of DNN in coding process, which is also friendly for 

embedded systems to accelerate computation with far fewer floating-point operations. 

To achieve this goal, we establish a LUT-based in-loop filtering framework (termed LUT-ILF), 
and introduce a series of LUT-related modules to strengthen its efficiency.



Our Basic Solution

We propose an efficient and practical in-loop filtering scheme by adopting the Look-up Table 
(LUT). We train the DNN of in-loop filtering within a fixed filtering reference range, and cache 
the output values of the DNN into a LUT via traversing all possible inputs. 
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Our Basic Solution

Illustration of the basic framework of look-up table-based in-loop filtering framework (LUT-ILF). 

Stage 1: Training Filtering Network 

Stage 2: Caching Network into LUT

Stage 3: Finetuning of Filtering LUT

Stage 4: Retrieval of Filtering LUT 



Our Basic Solution Stage 1: Training Filtering Network 

Due to the size of LUT grows exponentially as 
the dimension of indexing entries (i.e., target 
pixel with reference pixels) increases, the 
lightweight filtering network is trained with 
the constraint of a small reference range 
(receptive field, RF) in an end-to-end manner.

Taking the 2×2 reference range (4D LUT) as an 
example, the target pixel (to-be-filtered / 
reconstructed pixel) with three surrounding 
reference pixels (solid line) serves as the input 
to the network. To enlarge the size of RF, the 
rotation ensemble trick is used to cover the 
3×3 reference range (dotted line). The final 
output value is averaged by all outputs of the 
4 rotations (𝑉0∼ 𝑉3). 



Our Basic Solution

Stage 2 : Caching Network into LUT

With the network being trained, the 4D LUT is 
transferred and cached from the output values of the 
network via traversing all possible inputs (target pixel 
with reference pixels, [0∼255] [0∼255] [0∼255] 
[0∼255] for int8 case of input), as shown in Fig.

Note that the storage of LUT with a large input/output 
range will bring heavy storage cost, for example, the 
full size of 4D LUT is calculated as 2564×1×8 bit = 
4096 MB (4 GB), 2564 bins for possible input value 
(0∼255), 1 for 8-bit output value.



Our Basic Solution

To avoid the heavy storage cost, the indexes of full 
LUT are uniformly sampled and stored in the small 
LUT (named Clipped LUT), which only caches the 
output value of the most significant bits (MSB) of the 
input pixel value.

In our design, the 8-bit input pixel value is uniformly 
sampled to 4 MSBs, and the 4 MSBs serve as the 
initial (nearest) index for the indexing of input pixel. 
The input/output range of indexing is degraded to 
[0,16,…,240,255][0,16,…, 240,255] [0,16,…, 240,255] 
[0,16,…, 240, 255], and the size of Clipped LUT is 
calculated as 174×1×8 bit = 81.56 KB. 

Stage 2 : Caching Network into LUT



Our Basic Solution

To compensate for the degradation of LUT Clipping, 
the finetuning of Clipped LUT is performed to adapt 
to the uniform sampling and the interpolation model, 
facilitating the interpolation of the final retrieved 
filtered pixel value of non-sampled indexes of LUT 
from the nearest sampled indexes of LUT. 

In finetuning, the values of Clipped LUT are activated 
as the trainable parameters and finetuned by the 
same setting of filtering network training.

Stage 3 : Finetuning of Filtering LUT



Our Basic Solution

In the retrieval process of finetuned filtering LUT, 
with the indexing of the MSB of input pixels
(𝐼0, 𝐼1, 𝐼2, 𝐼3) in 4D Clipped LUT, the obtained 
output values of the nearest index and least 
significant bits (LSB) of the input pixels are used 
to interpolate the final retrieved filtered pixel by 
linear interpolation model. 

For the interpolation method of Clipped LUT, we 
follow the 4-Simplex interpolation model.

Stage 4 : Retrieval of Filtering LUT



1. First, the filtering reference range (RF, only 3×3) is limited with the 
constraint of LUT size, which is verified as an important factor in traditional 
filtering tools (such as ALF with 7×7 reference range). 

2. Second, the selection of reference pixels is very relevant to the filtering 
(such as the ALF with a diamond shape). 

To address these limitations, the reference, progressive, weighted indexing 
mechanism is introduced to enhance the above issues in our framework. 

Bottleneck of Basic LUT-ILF



Module 1: Reference Indexing 

To avoid the exponential growth in the size of LUT with the dimension, the 
complementary reference indexing is used to increase the reference range of target 
pixel by parallelizing more complementary indexing patterns to address more 
reference pixels and capture the rich local structures. As shown in Fig, it can cover a 
wide reference range. 



Module 1: Reference Indexing 

In LUT-ILF-V, besides the standard indexing pattern of LUT-ILF (Pattern 1, RF=3×3), 
complementary Pattern 2 and Pattern 3 are used to cover the 5×5 reference range. For the 
patterns of LUT-ILF-F, it can cover the 7×7 reference range. 

In this way, the total size of cached LUTs grows linearly (3 times a 4D Clipped LUT, 3×174×1×8 bit 
= 244.69 KB), instead of exponentially (the full size of a 25D LUT with an equivalent 5×5 
reference range is 25625−4 times a 4D LUT), in a single stage of reference indexing mechanism. 



Module 2 & 3: Progressive Indexing and Learnable Weighting 

As shown in Fig, the re-indexing mechanism is used to link the cascaded framework between 
multiple 4D LUTs. With the filtering of target pixel by multiple indexing patterns (5×5 
reference range) in stage 1 of progressive indexing, the filtered pixel of stage 1 contains the 
local information of 5×5 reference range implicitly. 



Module 2 & 3: Progressive Indexing and Learnable Weighting 

By shifting the filtering window in the 9×9 reference range, the local information of 9×9 
reference range can be aggregated into a 5×5 aggregated reference range. In stage 2 of 
progressive indexing, the reindexing mechanism can be used to filter the target pixel in the 
aggregated reference pixels to achieve the larger reference range implicitly. 



Module 2 & 3: Progressive Indexing and Learnable Weighting 

Above these ways, with the utilization of reference and progressive indexing, the total size of 
cached LUTs is linear to its indexing capacity (6 times a Clipped 4D LUT, 6×174×1×8 bit = 489.38 
KB), instead of exponentially (the full size of an 81D LUT with an equivalent 9×9 reference range 
is 25681−4 times a 4D LUT), in the whole process of very fast setting of LUT-ILF (LUT-ILF-V). For 
the fast setting (LUT-ILF-F), the total size of cached LUTs is 2.3× LUT-ILF-V’s size, instead of 
exponentially (the full size of a 169D LUT with an equivalent 13×13 reference range is 256169−4

times a 4D LUT).



Performance

In our experiment, the VVC reference software VTM-11.0 is used as the baseline. The codec adopts 
the configuration of all intra (AI) and random access (RA) according to the VVC Common Test 
Condition (CTC). For each test sequence, quantization parameter (QP) values are set to 22, 27, 32, 37, 
42, and Bjontegaard Delta-rate (BD-rate) is used as an objective metric to evaluate coding 
performance. For the complexity metrics, time complexity, computational complexity (kMAC/pixel), 
theoretical energy cost (pJ), and storage cost (KB) are evaluated. 



Performance

From Table, we can find that the different modes (ultrafast, very fast, fast) of our proposed LUT-ILF 
provide a series of new trade-off points between the performance and efficiency for practical 
applications. For the quantitative comparisons of performance and complexity, the computational 
complexity and decoding time complexity of LUT-ILF are 130×∼3600× and 46×∼2200× lower than 
that of popular NN-based ILF methods, and LUT-ILF also shows good performance potential.



Performance

Ablation Study: To validate the contributions of 
core modules in our scheme, we conduct the 
ablation experiments on proposed progressive 
indexing (PI), learnable weighting (LW), and the 
CTU-level RDO (RDO), under AI configuration. 

Usage Ratio: To verify the efficiency of LUT-ILF, 
we evaluate its usage ratio, which is calculated by, 
Ratio = 𝑁𝑡𝑒𝑠𝑡/𝑁𝑡𝑜𝑡𝑎𝑙. 

Low-bitrate Points Exploration: To further explore 
the potential of proposed method, we test our 
proposed method on low bitrate points (QP 
27∼47), as shown in Table IV. The results verify 
the powerful potential of the proposed method.



Supplementary





Thanks for your listening!
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