@ﬂé-&nﬁ é

nd Technology of Chit

VCIP 2024

ntelligént isual Data —_ ——
oding Lab

In-Loop Filtering via Trained Look-Up Tables

Zhuoyuan Li, Jiacheng Li, Yao Li, Li Li,
Dong Liu*, and Feng Wu

Intelligent Visual Data Coding Laboratory (iVC)
University of Science and Technology of China (USTC)
December 28, 2024 @ VCIP 2024

Homepage: https://zhuoyuanlil997.github.io/




Background

Neural network-based in-loop filtering (NNLF) methods achieve remarkable coding gains

beyond the capability of advanced video coding standards, which becomes a powerful coding
tool candidate for future video coding standards.

Rec —

Backbone of NNLF in VVC pred—
NN-based Exploration Extension (NNVC)

(e.g. JVET-AFO014 , JVET-AF0041 , JVET-AF0043)

Feature extraction Backbone Reconstruction
| r

-1

A

esBlock

—»

=
A Output

Conv3x3, 20

ResBlock
ResBlock
Conv3x3

R

~ Pt

QP —

Conv3x3

IPB —|

‘ Conv3x3 | ‘ Conv3x3 | ‘ Conv3x3 | ‘ Conv3x3 ‘ ‘ Conv3x3 ‘
|

‘ PReLU H PReLU H PReLU H PReLU H PReLU ‘

Performance: Lop-17.0 kMACs/pixel with -4.61% ~-4.78% in Al , Hop-477.0 kMACs/pixel
with -7.79%~-7.91% in Al



Concept

The utilization of deep neural networks (DNN) brings high computational complexity and
raises high demand of dedicated hardware, which is challenging to apply into general use.

Chip

Feature extraction Backbone Reconstruction

Pred—|

=
BS — 7 [ Output

Device

QP —

IPB —

| Conv3x3 | ‘ Conv3x3 | ‘ Conv3x3 | ‘ Conv3x3 ‘ | Conv3 x3 ‘
| PReLU | ‘ PReLU | ‘ PReLU | ‘ PReLU ‘ | PReLU ‘

Deep neural networks (DNN) Server

Resource Limitation: Time complexity, Computational complexity, Energy cost



Concept

The basic idea of the proposed scheme is to adopt the look-up operation (direct addressing)
of LUT to replace the inference process of DNN in coding process, which is also friendly for
embedded systems to accelerate computation with far fewer floating-point operations.

Network LUT

> > .

é é Practical (Io, 14,14, 15) Vo]
Index Value

To achieve this goal, we establish a LUT-based in-loop filtering framework (termed LUT-ILF),
and introduce a series of LUT-related modules to strengthen its efficiency.



Our Basic Solution

We propose an efficient and practical in-loop filtering scheme by adopting the Look-up Table

(LUT). We train the DNN of in-loop filtering within a fixed filtering reference range, and cache

the output values of the DNN into a LUT via traversing all possible inputs.

Retrieving the
Pixel in LUT

Caching Network
into LUT

Target
(to-be-filtered)
Pixel

Network
= = Practical
O O
LUT
Indexing

LUT

(IO! Ilt 144 15) [VO]

(10, Il: 141 IS) [VO]

Index

Value

Index

Retrieving

Value

FilteredPixel



Our Basic Solution

Rotation L Network Rotate
Ensemble T A —_— Back
1 2 N
0° —|| = Sllmdl/
/E Sl S (v Weighted
Targei L -
Pixel r — — rFrTrTTTT 1
= z I I
90° L] | — | | .
Referen ce""—"L 1 — — ] = |
Range N\ V|| E|.. | 2| |01 | Filtered |
180° 1 .L | — | ! Pixel !
- I 1
rTTA — T I I
1 = z P A N
o VST SIS -
270° :
RF=3x3

Stage 1: Training Filtering Network

, Network
:

=l | | 5| = |V
,'3 O - 0

All Possible All Corresponding
Inputs Transfer Outputs
7
Clipped LUT

(10: Il: IZJ 13) [Vﬂ]
Index Value

Stage 2: Caching Network into LUT

Clipped LUT

(Lo, I1,13,13) [V)]
Index Value

Finetuned

Interpolation LUT

Model |

4 :I 1
/he

Y |

T »

—

/ '.-;'f"“%rpa.’ared

lIyg—

Paoint

Stage 3: Finetuning of Filtering LUT

Locate . Interpolate
Finetuned .
Nearest LUT Grid
Grid Values
0/ — N\
Vo
12|13 —

Target —_— Retrieved
Pixel with - Filtered
Reference Pixel

Pixels

Stage 4: Retrieval of Filtering LUT

lllustration of the basic framework of look-up table-based in-loop filtering framework (LUT-ILF).

Stage 1: Training Filtering Network

Stage 2: Caching Network into LUT

Stage 3: Finetuning of Filtering LUT

Stage 4: Retrieval of Filtering LUT



Our Basic Solution

Rotation Network Rotate
Ensemble ™ T T 71 _ : Back
I - = —_
Oo — __5 ses ,5 — V .
— E = O 8 | Weighted
Target L
Pixel r = = rFrrTTTTT 1
I = = [ l
o = |~ | 3|~ ¥l . |
90° = = - |
Reference 1 _ = I l
Range ™\ =1 D 1| ak Filtered !
o el [© | Pixel !
180° _ _ _ 1 | I
rTTa _ | |
i = = R S O N E E
e LS S -
270° :
RF=3x3

Stage 1: Training Filtering Network

Due to the size of LUT grows exponentially as
the dimension of indexing entries (i.e., target
pixel with reference pixels) increases, the
lightweight filtering network is trained with
the constraint of a small reference range
(receptive field, RF) in an end-to-end manner.

Taking the 2x2 reference range (4D LUT) as an
example, the target pixel (to-be-filtered /
reconstructed pixel) with three surrounding
reference pixels (solid line) serves as the input
to the network. To enlarge the size of RF, the
rotation ensemble trick is used to cover the
3x3 reference range (dotted line). The final
output value is averaged by all outputs of the
4 rotations (Vo ~ V3).



Our Basic Solution

~ Network Stage 2 : Caching Network into LUT
| > S
L 5 Sl — With the network being trained, the 4D LUT is
I _13 = = transferred and cached from the output values of the

A”{ioiﬁb@ Trdnsfer All Cg;f;ﬁ;”dmg network via traversing all possible inputs (target pixel
P with reference pixels, [0~255] [0~255] [0~255]
[0~255] for int8 case of input), as shown in Fig.

Clipped LUT

Note that the storage of LUT with a large input/output
range will bring heavy storage cost, for example, the
(Ig,14,12,13) [Vo] full size of 4D LUT is calculated as 256* x1x8 bit =
4096 MB (4 GB), 256* bins for possible input value
(0~255), 1 for 8-bit output value.

Index Value




Our Basic Solution

I |15

I |

Inputs

A1l Possible All Corresponding
Transfer Outputs

Network
SERER
- -

Clipped LUT

(o, 11,15,13) [Vy]

Index lalue

Stage 2 : Caching Network into LUT

To avoid the heavy storage cost, the indexes of full
LUT are uniformly sampled and stored in the small
LUT (named Clipped LUT), which only caches the
output value of the most significant bits (MSB) of the
input pixel value.

In our design, the 8-bit input pixel value is uniformly
sampled to 4 MSBs, and the 4 MSBs serve as the
initial (nearest) index for the indexing of input pixel.
The input/output range of indexing is degraded to
[0,16,...,240,255][0,16,..., 240,255] [0,16,..., 240,255]
[0,16,..., 240, 255], and the size of Clipped LUT is
calculated as 17*x1x8 bit = 81.56 KB.



Our Basic Solution

I |15

I |

Inputs

Network
—| | = S =
- -

Vo

Al Possible All Corresponding
Transfer Outputs

Clipped LUT

(10! Il! 12: 13) [VU]

Index lalue

Stage 3 : Finetuning of Filtering LUT

To compensate for the degradation of LUT Clipping,
the finetuning of Clipped LUT is performed to adapt
to the uniform sampling and the interpolation model,
facilitating the interpolation of the final retrieved
filtered pixel value of non-sampled indexes of LUT
from the nearest sampled indexes of LUT.

In finetuning, the values of Clipped LUT are activated
as the trainable parameters and finetuned by the
same setting of filtering network training.



Our Basic Solution

Locate : Interpolate
Finetuned P

Nearest LUT Grid

Grid Values

0/ N\ -
W& — S I
Target — / Retrieved
Pixel with - Filtered
Reference Pixel
Pixels

Stage 4 : Retrieval of Filtering LUT

In the retrieval process of finetuned filtering LUT,
with the indexing of the MSB of input pixels

(Iy, 11, I, 13) in 4D Clipped LUT, the obtained
output values of the nearest index and least
significant bits (LSB) of the input pixels are used
to interpolate the final retrieved filtered pixel by
linear interpolation model.

For the interpolation method of Clipped LUT, we
follow the 4-Simplex interpolation model.



Bottleneck of Basic LUT-ILF

1. First, the filtering reference range (RF, only 3x3) is limited with the
constraint of LUT size, which is verified as an important factor in traditional
filtering tools (such as ALF with 7x7 reference range).

2. Second, the selection of reference pixels is very relevant to the filtering
(such as the ALF with a diamond shape).

To address these limitations, the reference, progressive, weighted indexing
mechanism is introduced to enhance the above issues in our framework.



Module 1: Reference Indexing

Reference Range / Recepftive Field = 5x5 in LUT-ILF-V

"""""""""
IIIIII
IIIIII
____________________________________

- el TR
. NI U i
|7 15} Pt il ilsiled
--------- r==1 F==r==1 rF==r==%

! Ll il B

T lalialialicl 1 T Tl 1

-

Pattern 1 Pattern 2 Pattern 3 !

- -
e |

______________

1 (] ] 1
______________

r——r——l
I:ll]

-------

Pattern 4

______________

———————
[ Ig

-------

‘l-li-

Pattern 5

______________

_______

Reference Range / Receptive Field = T7x7 in LUI-ILF-F

------

BEE

Pattern 6

o [E]
[ [nd]
Pattern 7

Fig. 2. Illustration of patterns of complementary reference indexing in LUT-ILF-U (only Pattern 1), LUT-ILF-V (Pattern 1~3), and LUT-ILF-F (Pattern
1~7). With the use of proposed indexing patterns, LUT-ILF can involve and address more reference pixels. For example, with Pattern 1~3, the 5 x5 reference
range around Ig is fully covered in LUT-ILF-V. With Pattern 1~7, the 7x7 reference range around [ is fully covered in LUT-ILF-F. The covered reference
pixels with the rotation ensemble trick are marked with dashed boxes.

To avoid the exponential growth in the size of LUT with the dimension, the
complementary reference indexing is used to increase the reference range of target
pixel by parallelizing more complementary indexing patterns to address more
reference pixels and capture the rich local structures. As shown in Fig, it can cover a

wide reference range.



Module 1: Reference Indexing

. | . . . .
Reference Range / Recepftive Field = 5x5 in LUT-ILF-V 1 Reference Range / Receptive Field =Tx7 in LUIT-ILF-F
l F==i rr==1 F==1 F==r == r==1 F==1 rr==1 T==1
™==1 r==1 ===1 ===1 r==1 : :---:r—-1 I'"E'"j I‘":"-j E"-:P'-1 I"-E"-': :-"1""1 =‘ -: =-‘ ! :--‘i
I 1 1 1 | ] | ] 1 1 1 1 ] 1 ] I 1 I I I ] 1 1 ]
N S ] [ I N N S I 1 IS N N I N i1 ! I - I - I -
. S I A | b o P
r~=r—mmEm T T r=t~~wmw--r--t I ==t | f==1 rF==1
i e NN A . [to] . | s
L[] .| L sted s s L)) L E
L RS U ] I bl 77 2% I S A [ .
1| 7 I I i [n M [
Pattern 1 Pattern 2 Pattern 3 ! Pattern 4 Pattern 5 Pattern 6 Pattern 7

Fig. 2. Illustration of patterns of complementary reference indexing in LUT-ILF-U (only Pattern 1), LUT-ILF-V (Pattern 1~3), and LUT-ILF-F (Pattern
1~7). With the use of proposed indexing patterns, LUT-ILF can involve and address more reference pixels. For example, with Pattern 1~3, the 5 x5 reference
range around Ig is fully covered in LUT-ILF-V. With Pattern 1~7, the 7x7 reference range around [ is fully covered in LUT-ILF-F. The covered reference
pixels with the rotation ensemble trick are marked with dashed boxes.

In LUT-ILF-V, besides the standard indexing pattern of LUT-ILF (Pattern 1, RF=3x3),
complementary Pattern 2 and Pattern 3 are used to cover the 5x5 reference range. For the
patterns of LUT-ILF-F, it can cover the 7x7 reference range.

In this way, the total size of cached LUTs grows linearly (3 times a 4D Clipped LUT, 3x17%x1x8 bit
= 244.69 KB), instead of exponentially (the full size of a 25D LUT with an equivalent 5x5
reference range is 2562>~% times a 4D LUT), in a single stage of reference indexing mechanism.



Module 2 & 3: Progressive Indexing and Learnable Weighting

Reference Range = 9x9

Shifting —»

Filtering Reference
Range
rrT==—rrT 1
| | g
| i i e i |

i ! é
I N IS
| [a] |3
' Target =
I I 3
(to-be-filtered) e

1 3
=

i U

&

Pixel

Reference Range = 9%9

- =

Indexing Mechanism (Stage 1)

------------------- [Ty
i Nenwork | Look-up Table |
! (Training)

(Testing)

LUT-1

(g, 14,14, 135) [Vo] |
Index Value i

R oo T LTI
i Training Testing !

LUT-2

I
!
/

i
[ Uolzlalio) V4] |
Index  Value |}

Testing
LUT-3

- i
i

g d5.16.10) [V2] |
Index  Value |}

]

)
I
1
i
i~

1
; Weighted
4 (Train/Fix)

1
1
. .

Aggregated

Reference Range |

Filtergd Pixel ()

Weighted
(Train/Fix)

ad

Progressive Indexing

(T0.11,14,15) [Vy] i

Index Value |1
]

(To.12,18,110) [V1] i

Index Valuwe i
1

(rmmm—————
1 T
i Training

(To.15,16,15) [V2] i
Index Value |}

enseConv] =

.........................................

E-'*El

Re-Indexing Mechanism (Stage 2)
i Training : Testing
| LUT-4

Weighted

w 1 Fix)

R S
I
I
I
I

— I:I —
i——Filtered Pixel ®
I
I
L dddmlem = =

RF=9x0

Weighted

1
t= [T @amFiv)

As shown in Fig, the re-indexing mechanism is used to link the cascaded framework between
multiple 4D LUTs. With the filtering of target pixel by multiple indexing patterns (5x5
reference range) in stage 1 of progressive indexing, the filtered pixel of stage 1 contains the
local information of 5x5 reference range implicitly.



Module 2 & 3: Progressive Indexing and Learnable Weighting

Filtering Reference

Target
(to-be-filtered)
Pixel

Reference Range = 9%9

Reference Indexing

Reference Range = 9x9

Shifting —»

Indexing Mechanism (Stage 1)

r 1
i Network | Look-up Table
i (Traning) 1 (Testing)
1
1 LUT-1
|
: (g, 14,14, 135) [Vo] |
I Index Value i
I
N S |
R oo TUTTTTTT TS
i Training J Testing !
! LUT-2
I

i
! otz 05, 010) V4] |}

:I Index Value |}
' 1
N —— = -

| Testing E
i
! LUT-3 !
I i
: (o, 15,16, 15) [V2] !
| Index  Value |}
]

I

1
il o o i

Aggregated
Reference Range

Re-Indexing Mechanism (Stage 2)

; i Testing
L [ rrT i T4 |
; .ﬂ — | aol ?...? ) (7] E-'* ] Weighted
081,84, 55 ol i iy
ALY Index  Value | wmﬂ
; Weighted  REF—0xC
(Train/Fix) RF=9%9 oo rTT--1=-I—rrT
R |
P | Testing |
i I i LUT-5 l
I — | |
- ._". I |. fz|— (To.T2.T5. T10) V1] e I:I 1 ]:[
Filterid Pival : I, 1“] Index Value || : Filtered Pixel %)
- ) I
} RF=9x9  t——————— ] ,
Weighted o el lddl_LLL
(Train/Fix) R | Testing RF=0%0
[ i 5
I - LUT & | Weighted
= | L W —— t= [T @amFiv)
: AR (To.15,7¢, 1) lﬁz]i
__' Index Value |1
I Iq i !
RF=oxo .\ ]

Progressive Indexing

By shifting the filtering window in the 9x9 reference range, the local information of 9x9
reference range can be aggregated into a 5x5 aggregated reference range. In stage 2 of
progressive indexing, the reindexing mechanism can be used to filter the target pixel in the
aggregated reference pixels to achieve the larger reference range implicitly.



Module 2 & 3: Progressive Indexing and Learnable Weighting

Reference Range =9x9  Indexing Mechanism (Stage 1)
FrTT—=——~ 77T 1 T
Network = . .
' Shifting —» I o 1 Look-up Table Aggregated Re-Indexing Mechanism (Stage 2)
8 (Training) Testi
I I I (Testing) Reference Range
— - > Trainin, ! Testin,
| A l I I g, g
' i ' * ! ST T T mia 1 LUT-4
C L R 52 s ~H =[] 2] -l
' P LISEE SIEE ! (o dyly15) [Vo] e S| e dndaTs) (7] weighted
o | I 2 1 Index Ve L 1, HIE I 0:71, 14 15 0 (Train/Fix)
Filtering Reference I RE—3x3 [ | 2 1 I Ol| 5 h Index Value
Range I = ! Weighted RF=9x0 ——— !
FTTo===rrT L I Bl 1 (Tram/Fix) FTTA===rrT 1
: | ._‘E:"ﬁ Trainin ! Testin Traini 1 1 I I
I 1 g Fre==—- I _ramn g I g FTo=—— I raining p Testing | -
: o | | I LUT-2 | i 1= 1 LUT-5 ! !
— | | ) I I ._ — 21| = 1 I |
: . : 8 ! I ; SR : (To. 12, 1g. I10) [V4] - ._’. : [i - l_l-z I | (14,15,75,110) [V4] - D ! ]:[ !
[ Target " 5 ! Ak Ik E|| £ Index  Value |} Filteriad Piver L St ! Index Value ' | Filtered Pixel @
| (to-be-filtered) : 5 L sl g 1S 2] " L] s 1|1 L<][2] ! | !
e 15 RF=5x5 . RF=9x9 ! : :
___________ Weighted PN S A A
Reference Range = 9%9 o : Training : Testing (Train/Fix) P — | Training : Testing RF=9x9
I 1 1 LUT-3 I | ] LUT-6
1 1 1 [ 1 I:l Weighted
Iy [ 1o ] b d - - - Train/Fix
T U gt te ) |~ ' 1 Qo156 1s) (7] (/e
| Lo ds g 1 . - 1 I .
Index Value Index Value
Ll J'— | L I
RF=5x%5 !

Progressive Indexing

Above these ways, with the utilization of reference and progressive indexing, the total size of
cached LUTs is linear to its indexing capacity (6 times a Clipped 4D LUT, 6x17%x1x8 bit = 489.38
KB), instead of exponentially (the full size of an 81D LUT with an equivalent 9x9 reference range
is 256%17% times a 4D LUT), in the whole process of very fast setting of LUT-ILF (LUT-ILF-V). For
the fast setting (LUT-ILF-F), the total size of cached LUTs is 2.3 x LUT-ILF-V’s size, instead of
exponentially (the full size of a 169D LUT with an equivalent 13x13 reference range is 25616974
times a 4D LUT).



Performance

TABLE 1
BD-RATE AND DIFFERENT COMPLEXITY RESULTS OF PROPOSED METHOD, AND COMPARISON RESULTS
WITH THE OTHER IN-LOOP FILTERING METHODS UNDER Al AND RA CONFIGURATIONS

Methods BD-Rate (AI) | BD-Rate (RA) |Computational Complexity| Storage Cost Energy Cost> | Time Complexity (enc/dec, CPU)
129.98 KB (int16)| 11900 pJ (int16) | 108%/4717%~109%/4724% (Al)

228.33 KB (floar)| 78200 pJ (float) | 114%/8274% ~114%/8322% (RA)
2826.2 KB (int16)|333900 pJ (int16)| 133%/24372%~276%/134057% (Al)
7444.5 KB (floatr) 2194200 pJ (float)|159%/43509% ~399%/227720% (RA)

NNVC-LOP! (VIM-11.0)|-4.61%~-4.78%| -5.20%~-5.37% 17.0 kMACs/pixel

NNVC-HOP! (VIM-11.0)|-7.79%~-7.91%|-10.12%~-10.31% 477.0 kMACs/pixel

LUT-ILF-U (VIM-11.0) -0.13% -0.10% 0.13 kMACs/pixel 164 KB (int8)* 180.2 pJ 101%/102% (AI), 101%/105% (RA)
LUT-ILF-V (VITM-11.0) -0.34% -0.27% 0.40 kKMACs/pixel 492 KB (int8) 4972 pJ 102%/103% (AI), 103%/106% (RA)
LUT-ILF-F (VITM-11.0) -0.51% -0.39% 0.93 kMACs/pixel 1148 KB (int8) 1163.25pJ (102%/106% (Al), 104%/108 % (RA)

I The results of BD-rate, time complexity, computational complexity, storage cost (int/float model) are cited from [26] (LOP) / [24], [25] (HOP) and open-sourced repository.
2 The energy cost is calculated according to [28]-[30]. For addition, int8/int!6/float32 corresponds to (0.03/0.05/0.9 p.J. For multiplication, the operation of int8/float16/float32 corresponds to 0.2/1.1/3.7 p.J. Since
the multiplication of intl6 is not reported in [29], it is referred to as median of the energy of int8 and float16. For the energy cost of NNVC-ILF, the results are directly calculated by their computational complexity.

3 The storage cost of a single model of LUT-ILF is shown.

In our experiment, the VVC reference software VTM-11.0 is used as the baseline. The codec adopts
the configuration of all intra (Al) and random access (RA) according to the VVC Common Test
Condition (CTC). For each test sequence, quantization parameter (QP) values are set to 22, 27, 32, 37,
42, and Bjontegaard Delta-rate (BD-rate) is used as an objective metric to evaluate coding
performance. For the complexity metrics, time complexity, computational complexity (kMAC/pixel),
theoretical energy cost (pJ), and storage cost (KB) are evaluated.



Performance

TABLE I
BD-RATE AND DIFFERENT COMPLEXITY RESULTS OF PROPOSED METHOD, AND COMPARISON RESULTS
WITH THE OTHER IN-LOOP FILTERING METHODS UNDER Al AND RA CONFIGURATIONS

Methods BD-Rate (AI) | BD-Rate (RA) |[Computational Complexity| Storage Cost Energy Cost’> | Time Complexity (enc/dec, CPU)
129.98 KB (int16)| 11900 pJ (int16) | 108%/4717%~109%/4724% (Al)
228.33 KB (float)| 78200 pJ (float) | 114%/8274%~114%/8322% (RA)
2826.2 KB (int16)333900 pJ (int16)| 133%/24372%~276%/134057% (Al)
7444.5 KB (float) |2194200 pJ (float)|159%/43509%~399%/227720% (RA)

NNVC-LOP! (VIM-11.0)|-4.61%~-4.78%| -5.20%~-5.37% 17.0 kMACs/pixel

NNVC-HOP' (VIM-11.0)|-7.79%~-7.91%|-10.12%~-10.31% 477.0 kMACs/pixel

LUT-ILF-U (VTM-11.0) -0.13% -0.10% 0.13 kMACs/pixel 164 KB (int8)* 180.2 pJ 101%/102% (AI), 101%/105% (RA)
LUT-ILF-V (VTM-11.0) -0.34% -0.27% 0.40 KMACs/pixel 492 KB (int8) 497.2pJ 102%/103% (Al), 103%/106% (RA)
LUT-ILF-F (VTM-11.0) -0.51% -0.39% 0.93 kKMACs/pixel 1148 KB (int8) 1163.25pJ (102%/106% (Al), 104%/108% (RA)

I The results of BD-rate, time complexity, computational complexity, storage cost (int/float model) are cited from [26] (LOP) / [24], [25] (HOP) and open-sourced repository.

% The energy cost is calculated according to [28]=[30]. For addition, int8/int!16/float32 corresponds to (0.03/0.05/0.9 p J. For multiplication, the operation of int§/float16/float32 corresponds to 0.2/1.1/3.7 p.J. Since
the multiplication of intl6 is not reported in [29], it is referred to as median of the energy of int8 and float16. For the energy cost of NNVC-ILF, the results are directly calculated by their computational complexity.

* The storage cost of a single model of LUT-ILF is shown.

From Table, we can find that the different modes (ultrafast, very fast, fast) of our proposed LUT-ILF
provide a series of new trade-off points between the performance and efficiency for practical
applications. For the quantitative comparisons of performance and complexity, the computational
complexity and decoding time complexity of LUT-ILF are 130 x~3600 x and 46 x~2200 x lower than
that of popular NN-based ILF methods, and LUT-ILF also shows good performance potential.



Performance

TABLE II
ABLATION STUDY OF LUT-ILF-V/F UNDER Al CONFIGURATION

Class w/o PI w/o LW w/o RDO LUT-ILF-V/F
A -0.09%/-0.19% -0.25%/-0.39% 1.89%/1.06% -0.30%/-0.45%
B -0.08% /-0.15% -0.19%/-0.30% 2.21%/1.32% -0.23%/-0.40%
C -0.07% /-0.13% -0.23%/-0.34% 0.64%/0.31% -0.29% /-0.39%
D -0.18% /-0.27% -0.46% /-0.60% 0.12%/-0.29% -0.52% /-0.70%
E -0.13%/-0.21% -0.34%/-0.59% 2.86%/1.32% -0.44% /-0.63%
Avg. -0.10%/-0.17% -0.28% /-0.43% 1.55%/0.77% -0.34% /-0.51%
TABLE III
CTU-LEVEL USAGE RATIO OF LUT-ILF-V/F UNDER AI CONFIGURATION
Class A B C D E Avg.
LUT-ILF-V | 31.81% 27.13% 39.44% 49.18% 27.07% | 34.41%
LUT-ILF-F | 43.92% 37.88% 48.10% 58.87% 39.13% | 45.31%
TABLE IV
BD-RATE RESULTS ON LOW-BITRATE POINTS UNDER AI CONFIGURATION
Class A B C D E Avg.
LUT-ILF-V | -0.70% -0.48% -0.64% -1.08% -0.95% | -0.74%
LUT-ILF-F | -1.01% -0.76% -0.84% -140% -1.32% | -1.03%

Ablation Study: To validate the contributions of
core modules in our scheme, we conduct the
ablation experiments on proposed progressive
indexing (Pl), learnable weighting (LW), and the
CTU-level RDO (RDO), under Al configuration.

Usage Ratio: To verify the efficiency of LUT-ILF,
we evaluate its usage ratio, which is calculated by,
Ratio = Neese/Neotar-

Low-bitrate Points Exploration: To further explore
the potential of proposed method, we test our
proposed method on low bitrate points (QP

27 ~47), as shown in Table IV. The results verify
the powerful potential of the proposed method.



Supplementary

I8
I i
F

|
. ) it Interpolate I
Finetuned LUT |4 — Simplex | Grid |
t . I Model I."rl ‘,: Values I
| [ =N ¥ o[
_ (Io, 1) [Vo] ! -
Target Pixel Index Value | 2 Retrieved |
with I Filtered |
Reference Pixels I h Point Pixel |
| |
e Unfolding ~ T
| Io = 74 (0100 1010 3)) .' folding
| Query:

. ", =98 (0110 00103)

: Most Significant Bits: My: 4, M;: 6 W = 24 (Sampling Interval)

' Least Significant Bits: L,: 10, L,:2 | Locating Deriving Wo =L,
Py = LUT[5][6] (L, > L, ,V) \ Wiy =1Ly —L,

.
Pog = LUT[4][6] ) |

|
|
|
: Py, = LUT[4][7] (Ly <L, )
|
|
|

S

=

f”
[ ——

i

i

i

i

i

1

1
@
—
o

o e e

Py, = LUT[5][7] Poo @

|
|
|
|
|
|
|
|
|
W, =W - L, !
|
|
|
|
|
|
|

Interpolation Process of Filtering LUT



TABLE IV
THE COMPUTATIONAL COMPLEXITY RESULTS AND SPECIFIC OPERATION NUM OF OUR PROPOSED BASIC FRAMEWORK

(LUT-ILF-U/V) ON THE PIXEL (PER PIXEL) AND FRAME LEVEL (A 1920 x 1080 HD FRAME).

Detailed Calculation of Computational Complexity / Energy Cost of LUT-ILF-U/V/F

Operation Level Operation Num of LUT-ILF-U | Operation Num of LUT-ILF-V
int8 Add 70 206
int§ Multiply 4 4
int32 Add 68 190
Pixel-wise
int32 Multiply 55 152
Total Add 138 396
Total Multiply 59 156
int8 Add 145,152,000 427,161,600
int8 Multiply , 8,294,400 8,294,400
Frame-wise
int32 Add 141,004,800 393,984,000
int32 Multiply 114,048,000 315,187,200
Total Add 286,156,800 821,145,600
Frame-wise
Total Multiply 122,342,400 323,481,600
Worse-case Computational
Pixel-wise 0.13 0.40
Complexity' (kMACs/pixel)
Energy Cost? (pJ) Frame-wise 180.2 497.2

! The “worse-case” means that if the number of additions is more than the number of multiplications, the calculation of kMAC tends to be additions.
? The energy cost is calculated according to [7]-[9). For addition, int&/inti6/floar32 corresponds to 0.03/0.05/0.9 p.J. For multiplication, the operation of int8/floati6/float32
corresponds to 0.2/1.1/3T pJ.



. ¢’@f4‘é&$ g

nd Technology of Chin

\l I e ' ' o I
I ]

v o

ntell/gent isual Data —_ ——

oding Lab

Thanks for your listening!

Intelligent Visual Data Coding Laboratory (iVC)
University of Science and Technology of China (USTC)
December 28, 2024 @ VCIP 2024

Homepage: https://zhuoyuanli1997.github.io/




	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23

