
In-Loop Filtering via Trained Look-Up Tables

Zhuoyuan Li, Jiacheng Li, Yao Li, Li Li,
Dong Liu*, and Feng Wu

Intelligent Visual Data Coding Laboratory (iVC)

University of Science and Technology of China (USTC)

December 28, 2024 @ VCIP 2024

Homepage: https://zhuoyuanli1997.github.io/

Neural network-based in-loop filtering (NNLF) methods achieve remarkable coding gains

beyond the capability of advanced video coding standards, which becomes a powerful coding

tool candidate for future video coding standards.

Performance: Lop-17.0 kMACs/pixel with -4.61%∼-4.78% in AI , Hop-477.0 kMACs/pixel
with -7.79%∼-7.91% in AI

Backbone of NNLF in VVC
NN-based Exploration Extension (NNVC)

(e.g. JVET-AF0014 , JVET-AF0041 , JVET-AF0043)

Background

Concept
The utilization of deep neural networks (DNN) brings high computational complexity and

raises high demand of dedicated hardware, which is challenging to apply into general use.

Deep neural networks (DNN)

Chip

Device

Server

Resource Limitation: Time complexity, Computational complexity, Energy cost

C
o
n
v

C
o
n
v

… Practical

Network

Concept

The basic idea of the proposed scheme is to adopt the look-up operation (direct addressing)

of LUT to replace the inference process of DNN in coding process, which is also friendly for

embedded systems to accelerate computation with far fewer floating-point operations.

To achieve this goal, we establish a LUT-based in-loop filtering framework (termed LUT-ILF),
and introduce a series of LUT-related modules to strengthen its efficiency.

Our Basic Solution

We propose an efficient and practical in-loop filtering scheme by adopting the Look-up Table
(LUT). We train the DNN of in-loop filtering within a fixed filtering reference range, and cache
the output values of the DNN into a LUT via traversing all possible inputs.

𝑰𝟎

Target
(to-be-filtered)

Pixel

C
o
n
v

C
o
n
v

…

Network

PracticalCaching Network
into LUT

Indexing Retrieving
Filtered Pixel

Retrieving the
Pixel in LUT

Our Basic Solution

Illustration of the basic framework of look-up table-based in-loop filtering framework (LUT-ILF).

Stage 1: Training Filtering Network

Stage 2: Caching Network into LUT

Stage 3: Finetuning of Filtering LUT

Stage 4: Retrieval of Filtering LUT

Our Basic Solution Stage 1: Training Filtering Network

Due to the size of LUT grows exponentially as
the dimension of indexing entries (i.e., target
pixel with reference pixels) increases, the
lightweight filtering network is trained with
the constraint of a small reference range
(receptive field, RF) in an end-to-end manner.

Taking the 2×2 reference range (4D LUT) as an
example, the target pixel (to-be-filtered /
reconstructed pixel) with three surrounding
reference pixels (solid line) serves as the input
to the network. To enlarge the size of RF, the
rotation ensemble trick is used to cover the
3×3 reference range (dotted line). The final
output value is averaged by all outputs of the
4 rotations (𝑉0∼ 𝑉3).

Our Basic Solution

Stage 2 : Caching Network into LUT

With the network being trained, the 4D LUT is
transferred and cached from the output values of the
network via traversing all possible inputs (target pixel
with reference pixels, [0∼255] [0∼255] [0∼255]
[0∼255] for int8 case of input), as shown in Fig.

Note that the storage of LUT with a large input/output
range will bring heavy storage cost, for example, the
full size of 4D LUT is calculated as 2564×1×8 bit =
4096 MB (4 GB), 2564 bins for possible input value
(0∼255), 1 for 8-bit output value.

Our Basic Solution

To avoid the heavy storage cost, the indexes of full
LUT are uniformly sampled and stored in the small
LUT (named Clipped LUT), which only caches the
output value of the most significant bits (MSB) of the
input pixel value.

In our design, the 8-bit input pixel value is uniformly
sampled to 4 MSBs, and the 4 MSBs serve as the
initial (nearest) index for the indexing of input pixel.
The input/output range of indexing is degraded to
[0,16,…,240,255][0,16,…, 240,255] [0,16,…, 240,255]
[0,16,…, 240, 255], and the size of Clipped LUT is
calculated as 174×1×8 bit = 81.56 KB.

Stage 2 : Caching Network into LUT

Our Basic Solution

To compensate for the degradation of LUT Clipping,
the finetuning of Clipped LUT is performed to adapt
to the uniform sampling and the interpolation model,
facilitating the interpolation of the final retrieved
filtered pixel value of non-sampled indexes of LUT
from the nearest sampled indexes of LUT.

In finetuning, the values of Clipped LUT are activated
as the trainable parameters and finetuned by the
same setting of filtering network training.

Stage 3 : Finetuning of Filtering LUT

Our Basic Solution

In the retrieval process of finetuned filtering LUT,
with the indexing of the MSB of input pixels
(𝐼0, 𝐼1, 𝐼2, 𝐼3) in 4D Clipped LUT, the obtained
output values of the nearest index and least
significant bits (LSB) of the input pixels are used
to interpolate the final retrieved filtered pixel by
linear interpolation model.

For the interpolation method of Clipped LUT, we
follow the 4-Simplex interpolation model.

Stage 4 : Retrieval of Filtering LUT

1. First, the filtering reference range (RF, only 3×3) is limited with the
constraint of LUT size, which is verified as an important factor in traditional
filtering tools (such as ALF with 7×7 reference range).

2. Second, the selection of reference pixels is very relevant to the filtering
(such as the ALF with a diamond shape).

To address these limitations, the reference, progressive, weighted indexing
mechanism is introduced to enhance the above issues in our framework.

Bottleneck of Basic LUT-ILF

Module 1: Reference Indexing

To avoid the exponential growth in the size of LUT with the dimension, the
complementary reference indexing is used to increase the reference range of target
pixel by parallelizing more complementary indexing patterns to address more
reference pixels and capture the rich local structures. As shown in Fig, it can cover a
wide reference range.

Module 1: Reference Indexing

In LUT-ILF-V, besides the standard indexing pattern of LUT-ILF (Pattern 1, RF=3×3),
complementary Pattern 2 and Pattern 3 are used to cover the 5×5 reference range. For the
patterns of LUT-ILF-F, it can cover the 7×7 reference range.

In this way, the total size of cached LUTs grows linearly (3 times a 4D Clipped LUT, 3×174×1×8 bit
= 244.69 KB), instead of exponentially (the full size of a 25D LUT with an equivalent 5×5
reference range is 25625−4 times a 4D LUT), in a single stage of reference indexing mechanism.

Module 2 & 3: Progressive Indexing and Learnable Weighting

As shown in Fig, the re-indexing mechanism is used to link the cascaded framework between
multiple 4D LUTs. With the filtering of target pixel by multiple indexing patterns (5×5
reference range) in stage 1 of progressive indexing, the filtered pixel of stage 1 contains the
local information of 5×5 reference range implicitly.

Module 2 & 3: Progressive Indexing and Learnable Weighting

By shifting the filtering window in the 9×9 reference range, the local information of 9×9
reference range can be aggregated into a 5×5 aggregated reference range. In stage 2 of
progressive indexing, the reindexing mechanism can be used to filter the target pixel in the
aggregated reference pixels to achieve the larger reference range implicitly.

Module 2 & 3: Progressive Indexing and Learnable Weighting

Above these ways, with the utilization of reference and progressive indexing, the total size of
cached LUTs is linear to its indexing capacity (6 times a Clipped 4D LUT, 6×174×1×8 bit = 489.38
KB), instead of exponentially (the full size of an 81D LUT with an equivalent 9×9 reference range
is 25681−4 times a 4D LUT), in the whole process of very fast setting of LUT-ILF (LUT-ILF-V). For
the fast setting (LUT-ILF-F), the total size of cached LUTs is 2.3× LUT-ILF-V’s size, instead of
exponentially (the full size of a 169D LUT with an equivalent 13×13 reference range is 256169−4

times a 4D LUT).

Performance

In our experiment, the VVC reference software VTM-11.0 is used as the baseline. The codec adopts
the configuration of all intra (AI) and random access (RA) according to the VVC Common Test
Condition (CTC). For each test sequence, quantization parameter (QP) values are set to 22, 27, 32, 37,
42, and Bjontegaard Delta-rate (BD-rate) is used as an objective metric to evaluate coding
performance. For the complexity metrics, time complexity, computational complexity (kMAC/pixel),
theoretical energy cost (pJ), and storage cost (KB) are evaluated.

Performance

From Table, we can find that the different modes (ultrafast, very fast, fast) of our proposed LUT-ILF
provide a series of new trade-off points between the performance and efficiency for practical
applications. For the quantitative comparisons of performance and complexity, the computational
complexity and decoding time complexity of LUT-ILF are 130×∼3600× and 46×∼2200× lower than
that of popular NN-based ILF methods, and LUT-ILF also shows good performance potential.

Performance

Ablation Study: To validate the contributions of
core modules in our scheme, we conduct the
ablation experiments on proposed progressive
indexing (PI), learnable weighting (LW), and the
CTU-level RDO (RDO), under AI configuration.

Usage Ratio: To verify the efficiency of LUT-ILF,
we evaluate its usage ratio, which is calculated by,
Ratio = 𝑁𝑡𝑒𝑠𝑡/𝑁𝑡𝑜𝑡𝑎𝑙.

Low-bitrate Points Exploration: To further explore
the potential of proposed method, we test our
proposed method on low bitrate points (QP
27∼47), as shown in Table IV. The results verify
the powerful potential of the proposed method.

Supplementary

Thanks for your listening!

Intelligent Visual Data Coding Laboratory (iVC)

University of Science and Technology of China (USTC)

December 28, 2024 @ VCIP 2024

Homepage: https://zhuoyuanli1997.github.io/

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23

