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Abstract—In-loop filtering (ILF) is a key technology in im-
age/video coding for reducing the artifacts. Recently, neural
network-based in-loop filtering methods achieve remarkable
coding gains beyond the capability of advanced video coding
standards, establishing themselves a promising candidate tool
for future standards. However, the utilization of deep neural
networks (DNN) brings high computational complexity and raises
high demand of dedicated hardware, which is challenging to
apply into general use. To address this limitation, we study
an efficient in-loop filtering scheme by adopting look-up tables
(LUTs). After training a DNN with a predefined reference range
for in-loop filtering, we cache the output values of the DNN
into a LUT via traversing all possible inputs. In the coding
process, the filtered pixel is generated by locating the input
pixels (to-be-filtered pixel and reference pixels) and interpo-
lating between the cached values. To further enable larger
reference range within the limited LUT storage, we introduce
an enhanced indexing mechanism in the filtering process, and
a clipping/finetuning mechanism in the training. The proposed
method is implemented into the Versatile Video Coding (VVC)
reference software, VTM-11.0. Experimental results show that the
proposed method, with three different configurations, achieves on
average 0.13%∼0.51%, and 0.10%∼0.39% BD-rate reduction
under the all-intra (AI) and random-access (RA) configurations
respectively. The proposed method incurs only 1%∼8% time
increase, an additional computation of 0.13∼0.93 kMAC/pixel,
and 164∼1148 KB storage cost for a single model. Our method has
explored a new and more practical approach for neural network-
based ILF.

Index Terms—In-loop filtering, deep neural network, Look-up
Table (LUT), video coding, VVC.

I. INTRODUCTION

In-loop filtering (ILF) has been widely adopted in modern
video coding standards, including H.266/VVC [1], AV2 [2].
To promote the reconstruction quality of decoded frame,
various complementary filters make a major contribution to
these standards and play a key role in hybrid video coding
framework, such as deblocking filter (DBF), sample adaptive
offset (SAO), adaptive loop filtering (ALF) [3].

Recently, deep neural network-based (DNN) coding tools
(e.g. intra prediction, ILF, etc.) have been rapidly developed
[4]–[18], and made good progress in some standardization
activities, such as neural network-based video coding (NNVC)
[7]. The DNN-based tools sufficiently take advantage of data-
driven capabilities to better fit the prediction or reconstruction
goals. Although these deep tools have made impressive perfor-
mance, they bring heavy time and computational complexity
that makes them difficult to use in practice without high-
performance hardware, and this is one of the major obstacles
for practical deep tools.
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To address this limitation, we propose an efficient and
practical in-loop filtering scheme by adopting the Look-up
Table (LUT), which is inspired by explorations in image/video
recovery tasks [19]–[23]. The basic idea of the proposed
scheme is to adopt the look-up operation (direct addressing)
of LUT to replace the inference process of DNN in coding
process, which is also friendly for embedded systems to ac-
celerate computation with far fewer floating-point operations.
To achieve this goal, we establish a LUT-based in-loop filtering
framework (termed LUT-ILF), and introduce a series of LUT-
related modules to strengthen its efficiency, including the
enhancement of filtering reference range with the limited LUT
size (progressive indexing and reference indexing, Section III),
the optimization of LUT size with limited memory cost (clip-
ping/finetuning, Section II), the selection of reference pixels
(learnable weighting, Section III). Compared to the low/high
complexity operation point setting (LOP/HOP) of NNVC-ILF
[24]–[26], our ultrafast mode (LUT-ILF-U, reference range:
5×5, 0.13 kMACs/pixel, 164 KB), very fast mode (LUT-
ILF-V, reference range: 9×9, 0.40 kMACs/pixel, 492 KB)
and fast mode (LUT-ILF-F, reference range: 13×13, 0.93
kMACs/pixel, 1148 KB) provide a series of new trade-off
points that show lower time and computational complexity
and good performance beyond VVC.

The remainder of this paper is organized as follows. First,
we introduce the basic framework (LUT-ILF). Second, we
introduce the enhanced framework and each module of LUT-
ILF-U/V/F. Third, we show the comprehensive evaluation of
proposed framework. Finally, we discuss the future work of
LUT-ILF scheme and put forward future improvements.

II. BASIC FRAMEWORK OF LUT-ILF

In this section, we introduce the basic framework of LUT-
ILF. As shown in Fig. 1, it contains four stages: training
filtering network, caching the filtering network into LUT,
finetuning of filtering LUT, retrieval of filtering LUT. The
cooperation of the above stages realizes the whole filtering
process, here we introduce them one by one.

Stage 1: Training Filtering Network. First, due to the size
of LUT grows exponentially as the dimension of indexing
entries (i.e., target pixel with reference pixels) increases, the
lightweight filtering network is trained with the constraint of
a small reference range (receptive field, RF) in an end-to-end
manner. Here we take the 2×2 reference range (4D LUT) as
an example, and the process is shown in stage 1 of Fig. 1, the
target pixel (to-be-filtered/reconstructed pixel, I0) with three
surrounding reference pixels (solid line) serves as the input to
the network. To enlarge the size of RF, the rotation ensemble
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Fig. 1. Illustration of the basic framework of look-up table-based in-loop filtering framework (LUT-ILF).

trick is used to cover the 3×3 reference range (dotted line).
The final output value (filtered pixel) is averaged by all outputs
of the 4 rotations (V0∼V3). In training, the filtered and original
pixels form a pair, which is supervised by MSE loss.

Stage 2 & Stage 4: Caching Network into LUT & Retrieval
of Filtering LUT. Second, with the network being trained,
the 4D LUT is transferred and cached from the output values
of the network via traversing all possible inputs (target pixel
with reference pixels, [0∼255][0∼255][0∼255][0∼255] for
int8 case of input), as shown in stage 2 of Fig. 1. Note that
the storage of LUT with a large input/output range will bring
heavy storage cost, for example, the full size of 4D LUT is
calculated as 2564×1×8 bit = 4096 MB (4 GB), 2564 bins for
possible input value (0∼255), 1 for 8-bit output value. To avoid
the heavy storage cost, the indexes of full LUT are uniformly
sampled and stored in the small LUT (named Clipped LUT),
which only caches the output value of the most significant
bits (MSB) of the input pixel value. In our design, the 8-bit
input pixel value is uniformly sampled to 4 MSBs, and the
4 MSBs serve as the initial (nearest) index for the indexing
of input pixel. The input/output range of indexing is degraded
to [0,16...240,255][0,16...240,255][0,16...240,255][0,16...240,
255], and the size of Clipped LUT is calculated as 174×1×8
bit = 81.56 KB. In the retrieval process of finetuned fil-
tering LUT, with the indexing of the MSB of input pixels
(I0, I1, I2, I3) in 4D Clipped LUT, the obtained output values
of the nearest index and least significant bits (LSB) of the input
pixels are used to interpolate the final retrieved filtered pixel
by linear interpolation model. For the interpolation method of
Clipped LUT, we follow the same model as [19]–[23], and
use the 4-Simplex interpolation model.

Stage 3: Finetuning of Filtering LUT. To compensate for
the degradation of LUT Clipping, the finetuning of Clipped
LUT is performed to adapt to the uniform sampling and
the interpolation model, facilitating the interpolation of the
final retrieved filtered pixel value of non-sampled indexes of
LUT from the nearest sampled indexes of LUT. In finetuning,
the values of Clipped LUT are activated as the trainable
parameters and finetuned by the same setting of filtering
network training.

III. LUT-ILF WITH REFERENCE, PROGRESSIVE,
WEIGHTED INDEXING MECHANISM

For the basic framework (LUT-ILF), the efficiency of LUT-
ILF is mainly subject to two aspects. First, the filtering
reference range (RF, only 3×3) is limited with the constraint of
LUT size, which is verified as an important factor in traditional

filtering tools (such as ALF [27] with 7×7 reference range).
Second, the selection of reference pixels is very relevant to
the filtering (such as the ALF [27] with a diamond shape). To
address these limitations, inspired by [20], [22], the reference,
progressive, weighted indexing mechanism is introduced to
enhance the above issues. Here, we detail them and serve the
LUT-ILF-V as an example, the framework is shown in Fig. 3.

Module 1: Reference Indexing. First, the reference pixel
range is enlarged to further take advantage of surrounding
information for the filtering of target (to-be-filtered) pixel. To
avoid the exponential growth in the size of LUT with the
dimension, the complementary reference indexing is used to
increase the reference range of target pixel by parallelizing
more complementary indexing patterns to address more ref-
erence pixels and capture the rich local structures. As shown
in Fig. 2, it can cover a wide reference range. In LUT-ILF-V,
besides the standard indexing pattern of LUT-ILF (Pattern 1,
RF=3×3), complementary Pattern 2 and Pattern 3 are used to
cover the 5×5 reference range. For the patterns of LUT-ILF-F,
it can cover the 7×7 reference range.

In this way, the total size of cached LUTs grows linearly
(3 times a 4D Clipped LUT, 3×174×1×8 bit = 244.69 KB),
instead of exponentially (the full size of a 25D LUT with an
equivalent 5×5 reference range is 256(25−4) times a 4D LUT),
in a single stage of reference indexing mechanism.

Module 2: Progressive Indexing. Second, the reference
pixel range of the to-be-filtered pixel is further enlarged
by introducing the cascaded filtering LUTs with progressive
indexing. As shown in Fig. 3, in the whole filtering process
of LUT-ILF-V, the re-indexing mechanism is used to link
the cascaded framework between multiple 4D LUTs. In the
detailed retrieval process of cascaded filtering LUTs, with
the filtering of target pixel by multiple indexing patterns
(5×5 reference range) in stage 1 of progressive indexing, the
filtered pixel of stage 1 contains the local information of 5×5
reference range implicitly. By shifting the filtering window
in the 9×9 reference range, the local information of 9×9
reference range can be aggregated into a 5×5 aggregated
reference range. In stage 2 of progressive indexing, the re-
indexing mechanism can be used to filter the target pixel in
the aggregated reference pixels to achieve the larger reference
range implicitly. The process of progressive indexing is similar
to cascading multiple convolutional layers in a neural network
and achieving information aggregation in the feature domain.

Above these ways, with the utilization of reference and
progressive indexing, the total size of cached LUTs is linear to
its indexing capacity (6 times a Clipped 4D LUT, 6×174×1×8
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Fig. 3. Illustration of the LUT-ILF-V framework, it contains two parts. On the left, the input (to-be-filtered) pixel with the filtering reference range is shown;
On the right, the process of LUT-ILF-V is shown, the parallel and cascaded networks/LUTs are performed with reference and progressive indexing at the
training/testing. The covered reference range of each pattern with the rotation trick is marked with dashed boxes. For training, the convolution of each pattern
can be implemented with standard convolutions and unfold/reshape operations. The Conv2×2-D2 denotes the convolutional layer with a dilation size of 2.

bit = 489.38 KB), instead of exponentially (the full size of an
81D LUT with an equivalent 9×9 reference range is 256(81−4)

times a 4D LUT), in the whole process of very fast setting of
LUT-ILF (LUT-ILF-V). For the ultrafast setting (LUT-ILF-U),
the total size of cached LUTs is 0.33× LUT-ILF-V’s size. For
the fast setting (LUT-ILF-F), the total size of cached LUTs is
2.3× LUT-ILF-V’s size, instead of exponentially (the full size
of a 169D LUT with an equivalent 13×13 reference range is
256(169−4) times a 4D LUT).

Module 3: Learnable Weighting. Third, with the extension
of reference range, the impact of reference pixels on the target
pixel should be considered. Instead of the direct average of
filtered pixel of different indexing patterns, the weights of
different indexing patterns are activated as the trained param-
eters and normalized to [0, 1] with the softmax() function to
adaptively fit the importance of different reference pixels in
the training of filtering network. At the test time, the weights
of different patterns are fixed and used by integer operation.

Summary: General Retrieval Formula. Finally, we formu-
late the retrieval of filtering LUT with utilization of clipping,
reference, progressive, weighted indexing mechanism in the
whole process of LUT-ILF. In stage 1 of LUT-ILF, for the
target pixel I0 with surrounding reference pixels, the filtered
pixel can be addressed and calculated by

Filtered P ixel(1) = (W
(1)
1 × LUT (1)

∗p1
[I0][I1][I4][I5] +W

(1)
2 × LUT (1)

∗p2

[I0][I2][I8][I10] + ··· +W (1)
n × LUT (1)

∗pn [·][·][·][·]···)/n
(1)

where (1) denotes the stage number of LUT, n denotes the

number of indexing patterns, LUT∗[·] denotes the look-up and
interpolation process of LUT retrieval, Pn denotes the pattern
ID, Wn denotes the weights of different indexing patterns.

In stage 2, the final filtered pixel can be addressed and
calculated by

Filtered P ixel(2) = (W
(2)
1 × LUT (2)

∗p1
[Î0][Î1][Î4][Î5] +W

(2)
2 ×

LUT (2)
∗p2

[Î0][Î2][Î8][Î10] + ··· +W (2)
n × LUT (2)

∗pn [̂·][̂·][̂·][̂·]···)/n
(2)

where the value (Î) denotes the output value of the previous
filtering stage that serves as the index of the following LUT.

IV. RATE-DISTORTION-OPTIMIZATION OF LUT-ILF

For the integration of LUT-ILF into the filtering process of
VVC (DBF, SAO, ALF), we set it at the end of all filtering
processes, and the decision flag of LUT-ILF is signaled in the
Coding Tree Unit (CTU) level to indicate the use of proposed
method. The flag is determined by the rate-distortion (RD) cost
function that J = SSD+λ×Rflag , where Rflag denotes the
rates of decision flag in CABAC-based rate estimation, SSD
denotes the sum of squared differences (SSD) between the
reconstructed result and filtering result of LUT-ILF.

V. EXPERIMENT

In our experiment, the VVC reference software VTM-11.0
is used as the baseline. The codec adopts the configuration
of all intra (AI) and random access (RA) according to the
VVC Common Test Condition (CTC). The test sequences from
classes A to E with different resolutions are tested as specified
in [31], [32]. For each test sequence, quantization parameter



TABLE I
BD-RATE AND DIFFERENT COMPLEXITY RESULTS OF PROPOSED METHOD, AND COMPARISON RESULTS

WITH THE OTHER IN-LOOP FILTERING METHODS UNDER AI AND RA CONFIGURATIONS

Methods BD-Rate (AI) BD-Rate (RA) Computational Complexity Storage Cost Energy Cost2 Time Complexity (enc/dec, CPU)

NNVC-LOP1 (VTM-11.0) -4.61%∼-4.78% -5.20%∼-5.37% 17.0 kMACs/pixel
129.98 KB (int16)

228.33 KB (float)

11900 pJ (int16)

78200 pJ (float)

108%/4717%∼109%/4724% (AI)

114%/8274%∼114%/8322% (RA)

NNVC-HOP1 (VTM-11.0) -7.79%∼-7.91% -10.12%∼-10.31% 477.0 kMACs/pixel
2826.2 KB (int16)

7444.5 KB (float)

333900 pJ (int16)

2194200 pJ (float)

133%/24372%∼276%/134057% (AI)

159%/43509%∼399%/227720% (RA)

LUT-ILF-U (VTM-11.0) -0.13% -0.10% 0.13 kMACs/pixel 164 KB (int8)3 180.2 pJ 101%/102% (AI), 101%/105% (RA)

LUT-ILF-V (VTM-11.0) -0.34% -0.27% 0.40 kMACs/pixel 492 KB (int8) 497.2 pJ 102%/103% (AI), 103%/106% (RA)

LUT-ILF-F (VTM-11.0) -0.51% -0.39% 0.93 kMACs/pixel 1148 KB (int8) 1163.25 pJ 102%/106% (AI), 104%/108% (RA)
1 The results of BD-rate, time complexity, computational complexity, storage cost (int/float model) are cited from [26] (LOP) / [24], [25] (HOP) and open-sourced repository.
2 The energy cost is calculated according to [28]–[30]. For addition, int8/int16/float32 corresponds to 0.03/0.05/0.9 pJ . For multiplication, the operation of int8/float16/float32 corresponds to 0.2/1.1/3.7 pJ . Since

the multiplication of int16 is not reported in [29], it is referred to as median of the energy of int8 and float16. For the energy cost of NNVC-ILF, the results are directly calculated by their computational complexity.
3 The storage cost of a single model of LUT-ILF is shown.

TABLE II
ABLATION STUDY OF LUT-ILF-V/F UNDER AI CONFIGURATION

Class w/o PI w/o LW w/o RDO LUT-ILF-V/F
A -0.09% / -0.19% -0.25% / -0.39% 1.89% / 1.06% -0.30% / -0.45%
B -0.08% / -0.15% -0.19% / -0.30% 2.21% / 1.32% -0.23% / -0.40%
C -0.07% / -0.13% -0.23% / -0.34% 0.64% / 0.31% -0.29% / -0.39%
D -0.18% / -0.27% -0.46% / -0.60% 0.12% / -0.29% -0.52% / -0.70%
E -0.13% / -0.21% -0.34% / -0.59% 2.86% / 1.32% -0.44% / -0.63%

Avg. -0.10% / -0.17% -0.28% / -0.43% 1.55% / 0.77% -0.34% / -0.51%

TABLE III
CTU-LEVEL USAGE RATIO OF LUT-ILF-V/F UNDER AI CONFIGURATION

Class A B C D E Avg.
LUT-ILF-V 31.81% 27.13% 39.44% 49.18% 27.07% 34.41%
LUT-ILF-F 43.92% 37.88% 48.10% 58.87% 39.13% 45.31%

TABLE IV
BD-RATE RESULTS ON LOW-BITRATE POINTS UNDER AI CONFIGURATION

Class A B C D E Avg.
LUT-ILF-V -0.70% -0.48% -0.64% -1.08% -0.95% -0.74%
LUT-ILF-F -1.01% -0.76% -0.84% -1.40% -1.32% -1.03%

(QP) values are set to 22, 27, 32, 37, 42, and Bjontegaard
Delta-rate (BD-rate) [33] is used as an objective metric to
evaluate coding performance. For the complexity metrics, time
complexity, computational complexity (kMACs/pixel [32]),
theoretical energy cost (pJ [28]–[30]), and storage cost (KB)
are evaluated. For the training setup of LUT-ILF-U/V/F, as
shown in Fig. 3 , the network is designed as 4 dense convo-
lutions with 1 convolutions in each stage, only the size of the
first layer is different to adapt to different shape of pattern, and
the BVI-DVC, DIV2K are used as the training datasets [34],
[35]. For different QPs, the LUT is trained separately. The
experimental results and the comparison with other methods
are shown in Table I.

Performance Analysis: From Table I, we can find that the
different modes (ultrafast, very fast, fast) of our proposed
LUT-ILF provide a series of new trade-off points between the
performance and efficiency for practical applications. For the
quantitative comparisons of performance and complexity, the
computational complexity and decoding time complexity of
LUT-ILF are 130×∼3600× and 46×∼2200× lower than that
of popular NN-based ILF methods [24]–[26], and LUT-ILF
also shows good performance potential.

Ablation Study: To validate the contributions of core mod-
ules in our scheme, we conduct the ablation experiments on

Fig. 4. The selection results of LUT-ILF-F of Cactus 1920×1080 on VTM-
11.0 (AI configuration, QP:32, POC:29), the green block indicates the block
filtered by LUT-ILF.

proposed progressive indexing (PI), learnable weighting (LW),
and the CTU-level RDO (RDO), under AI configuration. As
shown in Table II, for the comparison of variants and LUT-ILF,
the results verify the effectiveness of the proposed modules.

Usage Ratio: To verify the efficiency of LUT-ILF, we
evaluate its usage ratio (Table III), which is calculated by,
Ratio = Ntest/Ntotal, where Ntest indicates the number of
filtered CTU, and Ntotal indicates the total number of CTUs.
The selection results are also shown in Fig. 4, representing that
the LUT-ILF can better handle the complex texture regions.

Low-bitrate Points Exploration: To further explore the
potential of proposed method, we test our proposed method
on low bitrate points (QP 27∼47), as shown in Table IV. The
results verify the powerful potential of the proposed method.

VI. CONCLUSION

In this paper, we propose an efficient look-up table-based
ILF method, which adopts the strong fitting ability of deep
neural networks to model the compact look-up tables for
ILF. For practical application, the use of LUT-ILF does not
need to rely on high-performance hardware and devices. The
experimental results of LUT-ILF demonstrate it can achieve a
good performance with low time/computational complexity in
VVC, which provides a new practical way for neural network-
based video coding tools in the future. For future work,
we will further extend the proposed method to improve the
performance of more coding tools, such as the interpolation of
fractional-pixel motion estimation [36], [37], reference picture
resampling [38], etc.
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