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Abstract—To address the real-time analysis requirements of
video streaming applications, we propose an innovative inter-
relation-aware video complexity analyzer (IVCA) to enhance the
existing video complexity analyzer (VCA). The IVCA overcomes
the limitations of the VCA by incorporating inter-frame relations,
focusing on inter motion and reference structure. To begin with,
we improve the accuracy of temporal features by integrating
feature-domain motion estimation into the IVCA framework,
which allows for a more nuanced understanding of motion
across frames. Furthermore, inspired by the hierarchical ref-
erence structures utilized in modern codecs, we introduce layer-
aware weights that effectively adjust the contributions of frame
complexity across different layers, ensuring a more balanced
representation of video characteristics. In addition, we broaden
the analysis of temporal features by considering reference frames
rather than relying solely on the preceding frame, thereby enrich-
ing the contextual understanding of video content. Experimental
results demonstrate a significant enhancement in complexity
estimation accuracy achieved by the IVCA, coupled with a
negligible increase in time complexity, indicating its potential
for real-time applications in video streaming scenarios. This
advancement not only improves video processing efficiency but
also paves the way for more sophisticated analytical tools in video
technology.

Index Terms—Video complexity, Inter-frame relation, Video
streaming, Video coding

I. INTRODUCTION

Video data has grown explosively in recent years as an im-
portant information carrier in communication. Given the grow-
ing demand for video content, optimizing encoding parameters
for videos with different content complexity is essential to
ensure seamless and high-quality video streaming. A practical
approach is to extract relevant complexity features to perform
complexity estimation and adjust the encoding parameters.

There are two complexity estimation approaches: coding-
result-based and feature-based. The coding-result-based com-
plexity estimation methods usually establish a rate-distortion
model and estimate the model parameters based on the coding
results [1]–[3]. Therefore, they achieve high accuracy but re-
quire high computational complexity, unsuitable for real-time
scenarios. The feature-based complexity estimation methods
estimate complexity based on video’s spatial and temporal
features [4]–[7], with lower complexity but challenges for
accuracy improvement.
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Feature-based methods are popular for real-time scenarios.
ITU-T recommendations [8] propose using spatial perceptual
information (SI) and temporal perceptual information (TI)
scores to assess spatial and temporal complexity. The Video
Complexity Analyzer (VCA) [4], [7] achieves a good balance
between accuracy and complexity by extracting average tex-
ture energy (E) and an average gradient of texture energy (h)
as complexity features. However, VCA does not consider mo-
tion and reference structure in complexity estimation, which
are the inter relation of video. From the vast difference be-
tween P-frame and I-frame coding efficiency in video coding,
the inter relation of video is an essential consideration in
complexity estimation.

Considering inter relation, this paper introduces the inter-
relation-aware video complexity analyzer (IVCA), which is
built upon the foundation of the existing video complexity
analyzer (VCA). The IVCA enhances the process of com-
plexity estimation by integrating considerations of motion and
reference structure. To achieve this, we present feature-domain
motion estimation (ME), which significantly improves the
accuracy of temporal features by providing a more precise un-
derstanding of motion across frames. In addition, we develop
layer-aware weights that effectively capture the variations in
frame complexity across different hierarchical layers, taking
into account the nuances of the reference structure. Further-
more, we calculate temporal features based on the reference
structure instead of assuming a simple reference structure.
Experimental results indicate that the IVCA not only achieves
a marked improvement in accuracy compared to the VCA but
does so with a negligible increase in time complexity, making
it a viable option for real-time applications. Our contributions
can be summarized as follows:

• We design a feature-domain motion estimation to con-
sider the influence of inter-frame motion on the temporal
complexity.

• We propose a layer-aware weights scheme considering
the hierarchical reference structure.

• We propose a reference-based temporal feature using the
reference frame instead of the previous frame to calculate
the temporal feature.

• As shown in experimental results, compared to VCA,
our IVCA significantly improves complexity estimation
accuracy, with negligible time complexity increase.
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Fig. 1. The reference structure in x264: 3 Layers, GOP Size 4, Intra Period 250.

II. BACKGROUND

IVCA builds upon VCA, a complexity analyzer known for
its accuracy and low time complexity. To provide context for
IVCA, we briefly review VCA. In VCA, a DCT-based energy
function is used to evaluate the block-wise texture of each
frame, defined as follows:

Hp,k =

w−1∑
i=0

w−1∑
j=0

e

∣∣∣( ij

w2 )
2−1

∣∣∣ |DCT (i, j)|, (1)

where k represents the block index in the pth frame, w × w
denotes the block size, and DCT (i, j) represents the DCT
component at position (i, j). Based on the calculated energy,
the spatial feature E can be calculated as:

E =

B−1∑
k=0

Hp,k

C · w2
, (2)

where B represents the number of blocks per frame. The
temporal feature h can be calculated as:

h =

B−1∑
k=0

SAD (Hp,k, Hp−1,k)

C · w2
, (3)

where SAD() is the Sum of Absolute Differences measure.
Then, the frame-level complexity C is calculated by:

C =

N−1∑
i=0

hi +

M−1∑
j=0

Ej , (4)

where hi and Ej are the temporal feature of frame i and spatial
feature of frame j, respectively. N and M are the number
of inter-coded frames and intra-coded frames, respectively.
The design and implementation of VCA is straightforward,
and it has proven to be very efficient in video complexity
analysis [4]. However, from the principle of VCA, it can be
seen that it does not consider inter relations, including inter
motion and reference relations. The inter relation is the key to
affecting the efficiency of video coding. If the inter relation is
not considered, the estimated complexity will not match the
coding bitrate.

Fig. 2. Illustration of the proposed feature-domain motion estimation in the
horizontal direction. Blocks marked with different colors represent feature
samples with different energy.

III. METHODS

A. Feature-domain motion estimation

Inter-prediction is an important module in video compres-
sion which applies global or local motion estimation and
compensation (MEMC) to [9]–[13] reduce the temporal redun-
dancy between adjacent frames and could significantly reduce
the coding bits. Incorporating motion information into video
complexity analysis is crucial for the accuracy, particularly
by excluding simple motions, as they can be easily handled
by the codec with few side information bits and has limited
contribution to the coding bitrate. Based on this insight, we
propose a SAD feature-domain motion estimation method to
refine temporal features.

As illustrated in Fig.2, a maximum horizontal feature cosine
similarity Shor is firstly calculated between the current feature
sample and a set of candidate reference feature samples, with
neighboring feature samples also retrieved to perform the
calculation as equation (5), where N stands for the sliding
window size for cosine similarity calculation and j stands
for the candidate motion offset at the resolution of SAD
feature map. The vertical feature cosine similarity Sver has
a similar form with the step size for the cumulative sum over
H changing to the image width at the block granularity W as
equation (6).
Shor and Sver are then jointly utilized to determine the

attenuation factor multiplied to temporal complexity feature
h:

µ =

{
1− (Shor + Sver) (Shor + Sver) ≤ 1

1−max (Shor, Sver) otherwise
. (7)
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After that, the temporal complexity feature h can be obtained
by:

h =

B−1∑
k=0

µ× SAD (Hp,k, Hp−1,k)

C · w2
. (8)

H can be quantized and S2
hor, S2

ver may be actually used in
implementation to reduce the computation complexity.

B. Layer-aware weights scheme

The hierarchical reference structure ensures stable video
frame quality and sequential rate-distortion performance, so
it is widely used in video encoders such as x264 (as shown in
Fig.1). In a hierarchical reference structure, frames located at
different layers tend to have different importance. The frame at
the lower layer is referred to by more frames and is generally
more critical to the sequential rate-distortion performance.
Therefore, video codecs always design hierarchical quality
structures corresponding to hierarchical reference structures.
Inspired by this, we propose a layer-aware weights scheme
to assign varying weights to frames in different layers. Fur-
thermore, since I-frames do not refer to other frames and are
encoded differently from other frames, I-frames are treated as
a unique layer and are given special weights. This approach
enhances the calculation of sequence-level complexity, result-
ing in the following improved formula based on (4):

C=wL0

O−1∑
k=0

hk+wL1

P−1∑
m=0

hm+wL2

Q−1∑
n=0

hn+wI

M−1∑
j=0

Ej , (9)

where O, P , and Q are the number of frames in layer 0, 1,
and 2, respectively. wL0

, wL1
, and wL2

are the weights of
layer 0, 1, and 2, respectively.

To obtain the weights, we randomly select 50 video se-
quences in Inter4K after excluding the test dataset and get
the weights of all layers through grid search [14] on these 50
video sequences. The weights of the I-frame, layer 0, layer 1,
and layer 2 are 0.11, 0.04, 0.0001, and 0.0005, respectively.
Given that their importance in the reference structure is indeed
decreasing in order, it is intuitive that their complexity weights
should be decreasing in order.

C. Reference-based temporal feature

From equation (3), the VCA calculates the temporal feature
according to the SAD of the current frame’s texture and the

TABLE I
COMPLEXITY ESTIMATION ACCURACY AND SPEED COMPARISON.

Schemes Applied on VCA
Accuracy FPS

ME Weighting Reference

79.15% 48.04

! 82.88% 48.74

! 82.08% 48.04

! ! 86.67% (75.70%) 48.74

! ! ! 86.42% (76.95%) 48.64

previous frame’s texture. That is, it implicitly assumes that
the video frame only refers to the last frame. However, unlike
assuming each frame refers to the previous frame, the actual
reference structure of video frames follows a more complex
hierarchical pattern. Thus, instead of comparing the current
frame’s DCT energy with the previous frame’s DCT energy
as in (3), the temporal feature is calculated by comparing
the current frame’s DCT energy with the potential reference
frame’s DCT energy using SAD:

h =

C−1∑
k=0

SAD (Hp,k, Hq,k)

C · w2
, (10)

where q is the possible reference frame of frame p according
to the reference structure.

IV. EXPERIMENTAL RESULTS

The IVCA uses a comprehensive set of 50 continuous video
clips sourced from the Inter4K dataset [15]. As shown in
Fig.4, this dataset is well-regarded for its diverse range of
video content, providing a robust foundation for evaluating
video complexity. To assess the accuracy of the IVCA, we
utilize the Pearson Correlation Coefficient (PCC), which offers
a statistical measure of the linear correlation between the
complexity estimations and the actual coding bitrate produced
by the libx264 encoder (configured with the medium preset
and a Constant Rate Factor (CRF) of 26). Processing speed is
measured in Frames Per Second (FPS).

Table I shows the effectiveness of the proposed feature-
domain motion estimation method and layer-aware weights
scheme, resulting in 3.73% and 2.93% accuracy improve-
ments, respectively. Combining these methods achieves a total
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Fig. 3. Illustration of the distribution of libx264 coding bits and temporal complexity in VCA and IVCA on an inter-coded frame. (a) The heat map of the
libx264 coding bits. (b) The heat map of the temporal complexity in VCA. (c) The heat map of the temporal complexity in IVCA.
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Fig. 4. Examples of sequences in test dataset with mild and intense motion.

accuracy improvement of 7.52%. To more intuitively show
the complexity estimation accuracy of our IVCA, we show
the relationship between our estimated complexity on the
test dataset and the actual libx264 coding bitrate in Fig.5.
It can be intuitively seen from Fig.5 that there is a strong
positive correlation between our estimated complexity and
the actual coding bitrate. Our proposed IVCA scheme also
shows a temporal complexity distribution that closely aligns
with the actual coding bits of libx264 compared to VCA,
as illustrated in Fig.3. Simple motion in the background is
effectively handled to avoid estimation errors.

From the results obtained, the reference-based temporal
feature does not enhance performance on the test dataset.
This is primarily due to the mild motion in the test dataset
and the insignificant differences observed among reference
frames. However, as highlighted in the accompanying brackets,
it exhibits superiority on a subset of the dataset with intense
motion (12 video sequences in Inter4K). Consequently, when
these three contributions are integrated, the IVCA performs
better on datasets that feature intense motion, such as BVI-
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Fig. 5. A linear fitting between the IVCA estimated complexity and the actual
coding bitrate of libx264.

DVC [16] and USTC-TD [17]. Furthermore, it is essential to
note that the proposed IVCA exerts a negligible influence on
the overall time complexity, ensuring that the efficiency of
the video complexity estimation remains largely unaffected.
This balance between performance enhancement and time
complexity makes the IVCA particularly viable for real-time
applications.

V. CONCLUSION

In this paper, we present the inter-relation-aware video
complexity analyzer (IVCA) as a significant enhancement over
the existing video complexity analyzer (VCA), specifically
addressing its limitations that arise from a lack of consider-
ation for inter-frame relations. By incorporating motion and
reference structure, the IVCA provides a more thorough and
nuanced analysis of video complexity, which is crucial for
optimizing video streaming applications. The introduction of
feature-domain motion estimation and the implementation of
layer-aware weights and reference-based temporal features
enables the IVCA to achieve markedly improved estimation
accuracy. Notably, this enhancement is accomplished while
maintaining a negligible increase in time complexity compared
to the VCA, ensuring that the efficiency of real-time video
processing is preserved. Overall, the IVCA represents a sub-
stantial advancement in video complexity analysis, paving the
way for more effective and adaptive solutions in the evolving
landscape of video technology.
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