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ABSTRACT

To meet the real-time analysis requirements of video stream-
ing applications, we propose an inter-relation-aware video
complexity analyzer (IVCA) as an extension to VCA. The
IVCA addresses the limitation of VCA by considering inter-
frame relations, namely motion and reference structure. First,
we enhance the accuracy of temporal features by introduc-
ing feature-domain motion estimation into the IVCA. Next,
drawing inspiration from the hierarchical reference structure
in codecs, we design layer-aware weights to adjust the ma-
jorities of frame complexity in different layers. Additionally,
we expand the scope of temporal features by considering
frames that be referred to, rather than relying solely on the
previous frame. Experimental results show the significant
improvement in complexity estimation accuracy achieved by
IVCA, with minimal time complexity increase.

Index Terms— Video complexity, Inter-frame relation,
Video streaming, Video coding

1. INTRODUCTION

In the context of growing video content demand, optimizing
encoding parameters for videos with different content com-
plexity is essential to ensure seamless and high-quality video
streaming. A practical approach is to extract relevant com-
plexity features to perform complexity estimation and adjust
the encoding parameters.

There are two complexity estimation approaches: coding-
result-based and feature-based. Former achieves high accu-
racy but requires high computational complexity, unsuitable
for real-time scenarios [1, 2, 3]. Latter estimates complexity
based on video’s spatial/temporal features [4, 5, 6, 7], with
lower complexity but challenges for accuracy improvement.

Feature-based methods are popular for real-time scenar-
ios. ITU-T recommendations [8] propose using spatial per-
ceptual information (SI) and temporal perceptual information
(TI) scores to assess spatial and temporal complexity. The
Video Complexity Analyzer (VCA) [4] achieves a good bal-
ance between accuracy and complexity by extracting average
texture energy (E) and gradient of texture energy (h) as com-
plexity features. However, VCA does not sufficiently con-
sider motion and reference structure in complexity estimation.

This paper presents IVCA, an inter-relation-aware video
complexity analyzer built upon VCA. IVCA incorporates mo-
tion and reference structure considerations for enhanced com-
plexity estimation. We introduce feature-domain motion es-
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timation (ME) to improve the accuracy of temporal features.
Furthermore, we design layer-aware weights to account for
frame complexity variations across different layers, consider-
ing the reference structure. Additionally, we calculate tem-
poral features based on the reference structure. Experimental
results demonstrate that IVCA achieves improved accuracy
compared to VCA, with minimal increase in time complexity.

In this paper we will present the contribution performed
by the iVC1 and iVC2 teams in the “Grand Challenge on
Video Complexity”, part of the IEEE International Confer-
ence in Image Processing (ICIP) 2024.

2. BACKGROUND

IVCA builds upon VCA, a complexity analyzer known for
its accuracy and low time complexity. To provide context for
IVCA, we briefly review VCA. In VCA, a DCT-based energy
function is used to evaluate the block-wise texture of each
frame, defined as follows:

Hp,k =

w−1∑
i=0

w−1∑
j=0

e

∣∣∣( ij

w2 )
2−1

∣∣∣ |DCT (i, j)|, (1)

where k represents the block index in the pth frame, w × w
denotes the block size, and DCT (i, j) represents the DCT
component at position (i, j). Based on the calculated energy,
the spatial feature E can be calculated as:

E =

B−1∑
k=0

Hp,k

C · w2
, (2)

where B represents the number of blocks per frame. The tem-
poral feature h can be calculated as:

h =

B−1∑
k=0

SAD (Hp,k, Hp−1,k)

C · w2
. (3)

Then, the frame-level complexity C is calculated by:

C =

N−1∑
i=0

hi +

M−1∑
j=0

Ej , (4)

where hi and Ej are the temporal feature of frame i and spa-
tial feature of frame j, respectively. N and M are the number
of inter-coded frames and intra-coded frames, respectively.

3. METHODS

3.1. Feature-domain motion estimation

To improve complexity analysis, excluding simple motion be-
tween adjacent frames is crucial, as codecs can efficiently
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Fig. 1. Illustration of the proposed feature-domain motion es-
timation in the horizontal direction. Blocks marked with dif-
ferent colors represent feature samples with different energy.
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Fig. 2. The reference structure in x264: 3 Layers, GOP Size
4, Intra Period 250.

handle it [9, 10, 11, 12] with few side information bits. Thus,
we propose a SAD feature-domain motion estimation method
to refine temporal features.

As illustrated in Fig.1, a maximum horizontal feature co-
sine similarity Shor is firstly calculated between the current
feature sample and a set of candidate reference feature sam-
ples, with neighboring feature samples also retrieved to per-
form the calculation:

Shor=max
j


∑N−1

i=0 Hp,k+N
2 −iHp−1,k+N

2 −i+j√∑N−1
i=0 H2

p,k+N
2 −i

√∑N−1
i=0 H2

p−1,k+N
2 −i+j

 ,

(5)
where N stands for the sliding window size for cosine simi-
larity calculation and j stands for the candidate motion offset
at the resolution of SAD feature map.

The vertical feature cosine similarity Sver is derived sim-
ilarly and along with Shor they jointly determine the attenua-
tion factor multiplied to temporal complexity feature h:

µ =

{
1− (Shor + Sver) (Shor + Sver) ≤ 1

1−max (Shor, Sver) otherwise
. (6)

H can be quantized and S2
hor, S2

ver may be actually used in
implementation to reduce the computation complexity.

3.2. Layer-aware weights scheme

Inspired by the hierarchical reference structure employed in
codecs like x264 (as shown in Fig. 2), we propose a layer-
aware weights scheme to assign varying weights to frames
in different layers. This approach enhances the calculation
of sequence-level complexity, resulting in the following im-
proved formula based on (4):

C=wL0

O−1∑
k=0

hk+wL1

P−1∑
m=0

hm+wL2

Q−1∑
n=0

hn+wI

M−1∑
j=0

Ej , (7)

Table 1. Complexity accuracy and speed comparison.
Schemes Applied on VCA Accuracy FPSME Weighting Reference

79.15% 48.04
! 82.88% 48.74

! 82.08% 48.04
! ! 86.67% (75.70%) 48.74
! ! ! 86.42% (76.95%) 48.64

where O, P , and Q are the number of frames in layer 0, 1, and
2, respectively. wL0

, wL1
, and wL2

are the weights of layer
0, 1, and 2, respectively.

3.3. Reference-based temporal feature

Unlike assuming each frame refers to the previous frame, the
actual reference structure follows a hierarchical pattern. Thus,
instead of comparing the current frame’s DCT energy with the
previous frame’s DCT energy as in (3), the temporal feature
is calculated by comparing the current frame’s DCT energy
with the potential reference frame’s DCT energy using SAD:

h =

C−1∑
k=0

SAD (Hp,k, Hq,k)

C · w2
, (8)

where q is the possible reference frame of frame p.

4. RESULTS

The IVCA evaluation involves 50 continuous video clips from
the Inter4K dataset [13]. Accuracy is assessed using the Pear-
son Correlation Coefficient (PCC) against libx264 coding bi-
trate (medium preset, CRF 26). Processing speed is measured
in Frames Per Second (FPS).

Table 1 shows the effectiveness of the proposed feature-
domain motion estimation method and layer-aware weights
scheme, resulting in 3.73% and 2.93% accuracy improve-
ments, respectively. Combining these methods (iVC2) achieves
a total accuracy improvement of 7.52%. The reference-based
temporal feature does not improve performance due to the
mild motion and insignificant differences between references
on the test dataset. However, it exhibits superiority on a
subset of the dataset with intense motion (12 video clips in
Inter4K), as indicated by the results in brackets. Thus, when
the three contributions are combined (iVC1), IVCA will
exhibit better performance on datasets with intense motion,
such as the BVI-DVC [14] and USTC-TD [15]. The proposed
IVCA schemes have negligible impact on time complexity.

5. CONCLUSION

We propose IVCA as an improvement over the existing VCA,
addressing its limitations. IVCA takes into account motion
and reference structure, offering a more comprehensive anal-
ysis of complexity in video streaming applications. Through
the introduction of feature-domain motion estimation, layer-
aware weights, and reference-based temporal feature, IVCA
achieves improved estimation accuracy while maintaining
negligible increases in time complexity compared to VCA.
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