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Learning Dual Modality Interactions for
Event-based Motion Deblurring

Zeyu Xiao, Zhuoyuan Li, Yang Zhao, Yu Liu, Zhao Zhang, and Wei Jia

Abstract—Event cameras hold great potential for motion
deblurring because they capture motion information with mi-
crosecond precision, offering robustness to motion blur. However,
the limited interaction between RGB frames and event streams
presents a significant challenge, preventing the full utilization
of the event cameras’ unique advantages. To address this, we
propose Dual frame-event Interaction and introduce a multi-scale
Network structure, Dulnt-Net. Dulnt-Net aims to tackle two key
challenges: (1) enhancing the representational and interaction
capabilities between RGB frames and event streams, and (2)
adaptively selecting richer visual features for improved motion
deblurring. We introduce an event-frame joint interaction module
that consists of three branches: a base branch, a global awareness
attention branch, and a local enhancement attention branch. The
base branch processes essential pixel-level features that retain
the original structural information. The global branch integrates
event data to improve large-scale motion understanding, while
the local branch uses large-kernel convolutions to refine fine-
grained details in RGB frames. For superior reconstruction
performance, we also propose the event-guided multi-scale fusion
attention module, which effectively combines local visual informa-
tion and global frame-event relationships. Extensive experiments
demonstrate that Dulnt-Net achieves superior performance, both
quantitatively and qualitatively, showcasing its superior motion
deblurring capabilities.

Index Terms—Image deblurring, Event camera, Cross-modal
learning

I. INTRODUCTION

Motion blur, typically caused by camera shake or object
motion during exposure, severely degrades visual quality.
This degradation poses significant challenges for various
computer vision tasks, including image reconstruction [I]-
[3], visual tracking [4]-[6], image segmentation [7], video
surveillance [8], [9], and video compression [10]-[14]. The
core challenge in motion deblurring is to restore sharp images
while preserving essential edge structures and fine details,
which are often lost during the blurring process. This makes
it a highly complex task that requires sophisticated techniques
to differentiate and recover the fine nuances in blurred images.
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Fig. 1. (a) Non-interaction methods rely on basic fusion strategies that
fail to incorporate meaningful event-frame interactions in the spatio-temporal
domain. (b) Single-interaction methods integrate RGB frames and event
streams in a limited fashion, not fully leveraging the microsecond precision
and motion blur robustness provided by event cameras. (c) We propose the
dual frame-event interactions approach to enhance both the representational
and interaction capabilities between RGB and event modalities, adaptively
fusing richer visual features for more effective deblurring.

Early methods for motion deblurring, such as the Wiener
filter [15] and the Richardson-Lucy algorithm [16], were based
on Bayesian frameworks and used iterative approaches to
restore sharp images. While effective for certain blur types,
these methods were computationally expensive and limited in
their ability to handle complex blur patterns. In subsequent
years, researchers focused on developing more sophisticated
image priors [17]-[20] or introducing more complex data
terms [21] to enhance deblurring performance under a wider
range of conditions. With the advent of deep learning, particu-
larly convolutional neural networks (CNNs) [22], [23], vision
Transformers [24]-[26], and MLP-based architectures [27],
significant progress has been made in motion deblurring. These
models have demonstrated impressive results across various
scenarios, particularly in challenging conditions such as large
motion blur or noisy inputs. More recently, Mamba-based
architectures [28], [29] have been proposed to enhance perfor-
mance further, leveraging the strengths of both convolutional
and Transformer-based designs. Despite recent advancements,
motion deblurring remains a highly ill-posed problem, pri-
marily due to the challenge of accurately estimating spatially
varying blur kernels from limited and noisy observations. This
issue becomes more pronounced under severe blur, where
essential motion information is lost during exposure, com-
plicating restoration. While recent deep learning approaches
have shown promise, more robust models capable of handling
complex blur patterns are still needed to ensure high-quality
restoration in even the most challenging scenarios.

Event cameras, which asynchronously detect pixel-level
brightness changes with microsecond precision, excel at cap-
turing high-temporal-resolution motion, making them highly
suitable for motion deblurring tasks [30]-[38]. Despite recent
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advances, the limited interaction between RGB frames and
event streams remains a critical bottleneck, hindering the full
utilization of the event cameras’ superior precision. Current
methods primarily rely on basic fusion strategies to combine
the spatial complementarity of RGB frames and event data.
However, they fail to address modality redundancy and often
overlook the potential for deeper, more meaningful event-
frame interactions (see Figure 1). This limitation ultimately
restricts the performance of these approaches, leaving room
for significant improvements in integrating the two modalities.

In this paper, we introduce a novel approach for motion
deblurring by leveraging Dual frame-event Interactions within
a multi-scale Network architecture called Dulnt-Net. This
model addresses two fundamental challenges when integrating
event cameras into motion deblurring tasks: (1) how to en-
hance the representational and interaction capabilities between
RGB frames and event data, and (2) how to adaptively select
and fuse richer visual features from both sources to achieve
superior deblurring performance (see Figure 1). To enhance
the interaction between RGB frames and event data, we
propose the event-frame joint interaction (EFJI) module. This
module integrates event data into the RGB feature extraction
pipeline through three distinct branches: global, local, and
base. The global branch leverages the event camera’s high
temporal resolution to capture overall motion patterns and
object localization, providing comprehensive motion context.
The local branch refines fine-grained spatial details using
large-kernel convolutions to enhance the RGB frames with
precise event cues. Meanwhile, the base branch encodes
RGB features independently, ensuring a robust foundational
representation that anchors the fusion process. This three-
branch organization ensures that the event and frame data
interact efficiently, each branch contributing distinct insights
into motion understanding. We further propose the event-
guided multi-scale fusion attention (EMFA) module, which
enhances reconstruction performance by extracting rich visual
information from both RGB and event modalities. The EMFA
module combines the strengths of both sources through a gated
fusion mechanism. It captures multi-scale local features with
convolutional blocks and models global relationships between
frames and events. This integration of global and local features
at multiple scales ensures that the system accurately preserves
fine details while reconstructing broader motion contexts. By
incorporating the EFJI and EMFA modules into a Unet-based
framework, Dulnt-Net achieves state-of-the-art performance in
motion deblurring. Extensive experiments demonstrate that our
method outperforms existing solutions, delivering robust and
high-quality restoration even in challenging conditions.

In summary, this paper presents three key contributions: (1)
The EFJI module: We propose a novel module that effectively
integrates event data and RGB frames using global and local
attention mechanisms, enhancing motion understanding and
enabling finer detail refinement. (2) The EMFA module:
We introduce a multi-scale fusion attention mechanism that
strengthens cross-scale interactions by combining complemen-
tary features from event and RGB modalities, resulting in a
more robust feature representation. (3) Advanced results: We
demonstrate that Dulnt-Net achieves superior performance on

multiple benchmark datasets, showcasing the effectiveness of
our approach compared to existing methods.

II. RELATED WORK
A. Motion Deblurring

Motion deblurring is a challenging, ill-posed problem that
aims to reconstruct sharp images from blurry observations.
Early methods rely on handcrafted priors and empirical con-
straints [39]-[43]. With the rise of deep learning, data-driven
approaches become dominant. Initial CNN-based methods
estimate blur kernels and refine them with prior-based restora-
tion techniques [44]-[47]. However, inaccuracies in kernel
estimation often introduce artifacts due to treating blur kernels
and clear images separately. Subsequent methods focus on
direct clear image estimation. Nah et al. [48] propose a multi-
scale CNN that leverages coarser-scale outputs to guide finer
estimates, while Zhang et al. [49] introduce a hierarchical
multi-patch network with cross-stage feature concatenation.
Cho et al. [50] develop a multi-input, multi-output U-Net
for improved efficiency. Recently, Transformers gain attention
for modeling global contexts in deblurring. Zamir et al. [51]
introduce channel-wise self-attention, and Tsai et al. [260] use
intra- and inter-strip tokens for feature reweighting. In video
deblurring, spatio-temporal correlations are exploited via re-
current networks and CNNs [52], [53], while optical flow [54]
and deformable convolutions [55] further enhance modeling.
Transformers also demonstrate potential for capturing long-
range dependencies [56].

B. Event-based Motion Deblurring

Event cameras, inspired by the human visual system, cap-
ture rapid scene dynamics with high temporal resolution and
low latency, making them invaluable for motion deblurring
and precise image restoration. Early works employ physical
models to describe the relationship between sharp and blurry
images [30], [57], but performance is hindered by sensor
noise. More recent methods have shifted to learning-based ap-
proaches [38], [58], [59], with some using events as auxiliary
inputs in a unidirectional manner, integrating event features
at single levels [36], [60]. In contrast, others employ cross-
modal attention modules for multi-level fusion [35], [61]. Bidi-
rectional methods treat events and frames equally, facilitating
single- [31], [62] or multi-level interactions [34]. Additionally,
real-world challenges like unknown exposure times have been
addressed to enhance practical applications [03]. Recently,
Shen et al. [64] propose a two-stage framework that first
restores degraded real-world event streams and then uses the
restored events to guide image deblurring. In this paper, we
propose a novel framework for event-based motion deblurring
that addresses the challenge of limited interaction between
RGB frames and event streams by assuming clean event inputs
and focusing on effective event-RGB joint interaction and
fusion. Our method leverages cross-modal attention mecha-
nisms and multi-level fusion to fully exploit event cameras’
microsecond precision and motion blur robustness, improving
the overall deblurring performance.
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C. Event-based Video Processing

One of the key advantages of event cameras is their ability to
capture motion information during exposure, serving as crucial
motion cues for deblurring [65]-[67]. This enables them to
effectively address motion blur, outperforming traditional RGB
cameras, especially in fast-moving scenes. In video frame
interpolation, methods like TimeLens [68] leverage event data
to enhance accuracy and temporal resolution. Recent works
focus on sophisticated interaction modules to facilitate seam-
less event-RGB fusion, leading to substantial performance
improvements [69]-[73]. Event cameras also mitigate rolling
shutter artifacts by providing real-time motion feedback [74]—
[77], improving video quality in dynamic environments. They
also demonstrate strong potential in various tasks, including
depth estimation [78]-[80], high-dynamic-range imaging [81]-
[84], deraining [61], low-light enhancement [85], [86], and
video super-resolution [87]-[89], underscoring their versatility
in advancing visual applications.

III. METHOD
A. Overview

Given a motion-blurred image I” and an event stream
Er = {(z4,ys, ps, ti)};, > which captures all events triggered
during the exposure time 7', the goal is to recover a sharp, clear
frame I. The event stream Er consists of asynchronous, high-
temporal-resolution events, where each event {(z;, y;,pi, t;)}
represents a change in intensity at pixel location (z;,y;) with
polarity p = +1, indicating whether the intensity increased or
decreased, at time ¢;. These events provide valuable temporal
information, which is often lost in traditional frame-based
imaging systems.

To achieve this, we propose Dulnt-Net, a framework that
fuses spatial information from I” with temporal information
from Er through dual cross-modal interactions. The sharp
frame reconstruction can be formulated as

I = Dulnt-Net(I®, Ep). 1)

As illustrated in Figure 2, we first extract multi-scale
features from I and Er using separate encoders: F! for the
image and FfE for the event stream, where [ € 1,2, 3 indicates
the level. To account for the domain gap, we employ distinct
encoders. For the RGB encoder Encodery(-), we use residual
blocks and residual atrous spatial pyramid pooling (ResASPP)
blocks [90], [91] to capture large receptive fields and multi-
scale features, essential for deblurring [54]. For events, we use
stacked convolution layers in Encoderg(-) to handle noise and
sparsity as

F! = Encoder(I?), ()
Fl, = Encoderg(Fr7). 3)

The structures of both feature encoders are shown in Figure 3.

The extracted features are then processed through the EFJI
modules, which enhance the interaction Efl:tween flvent and
frame data, resulting in refined features F'; and F'y. These
features are further refined by the EMFA modules, which fuse
the spatial and temporal information, yielding the final fused
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Fig. 2. Overview of the proposed Dulnt-Net. Dulnt-Net adopts a multi-
scale hierarchical design that jointly leverages the EFJI (event-frame joint
interaction) and EMFA (event-guided multi-scale fusion attention) modules.
It comprises dual-stream encoders for event and frame inputs, enabling rich
cross-modal interactions at multiple feature levels. The fused features are
progressively decoded to produce the final deblurred output, with the skip
connection operation preserving spatial details.

representations Fl. To effectively restore the sharp image, the
output features from the EMFA modules are combined with
the original frame features FZI and fed into the decoder. This
step facilitates the deblurring process.

A residual connection between the blurred image I” and
the decoder output reduces the learning difficulty, ensuring
that the network can effectively focus on refining the details
rather than learning the entire image from scratch. The final
reconstruction is given by

[ = Decoder(F; + F') + I5, @)

where Decoder(-) denotes the decoder, which consists of both
residual blocks and ResASPP blocks.

The encoder-decoder architecture is illustrated in Figure 3,
where the encoder captures high-level spatial features and the
decoder refines these features to produce the final deblurred
image. The differences in encoder structures reflect the distinct
characteristics of RGB frames and event data. We design sep-
arate encoders tailored to their specific roles in the deblurring
process. The frame encoder adopts a hierarchical convolutional
structure with downsampling residual blocks and ResASPP
modules to effectively capture multi-scale spatial features and
expand receptive fields, which is crucial for reconstructing
fine textures, structural edges, and global context in blurred
RGB frames. In contrast, the event encoder employs a simpler
design with stacked convolutional layers, omitting ResASPP
or downsampling residual blocks, to efficiently process sparse,
asynchronous event data and extract high-temporal-resolution
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Fig. 3. Detailed architectures of the proposed feature encoders and decoder.
(a) The frame encoder integrates convolutional layers, residual blocks with
downsampling, and ResASPP modules for enhanced spatial encoding. (b) The
event encoder employs a series of convolutional layers to extract multi-level
event representations. (c) The frame decoder mirrors the encoder structure
with upsampling residual blocks and ResASPP modules to reconstruct high-
quality frames progressively.

motion cues with minimal computational overhead. Since
events inherently provide localized motion information, ex-
tensive spatial context aggregation is less critical. Overall,
this design enables the frame encoder to focus on spatial
structures and the event encoder to capture temporal dynamics,
allowing each to leverage its modality’s strengths efficiently
and robustly.

B. Event-Frame Joint Interaction

Integrating event and RGB data can significantly enhance
motion deblurring by providing complementary information
from both modalities. However, existing methods struggle to
effectively fuse these sources due to limitations in representa-
tion and insufficient cross-modal interactions, leading to un-
derutilization of the rich temporal and spatial cues from event
cameras and RGB frames. Strengthening these interactions is
crucial for capturing more detailed and precise representations,
particularly in motion deblurring, where both fine details
and motion information are essential. To address this, we
propose the EFJI module, which improves representation and
interaction capabilities by combining global and local features
from both modalities. The global branch captures motion
across the scene, while the local branch refines fine details,
ensuring precise feature fusion for better deblurring.

As shown in Figure 4, the EFJI module consists of three
branches: the global, local, and base branches, which fa-
cilitate the interaction between RGB and event data. The
global branch integrates event information to enhance implicit
object localization and motion estimation from a broader
perspective for deblurring, while the local branch employs
large kernel convolutions to capture fine-grained event de-
tails, thereby refining the RGB feature representations. The
global branch integrates event information to enhance implicit
object localization and motion estimation from a broader
perspective for deblurring, while the local branch employs
large kernel convolutions to capture fine-grained event details,
thereby refining the RGB feature representations. The base
branch focuses solely on encoding the RGB features, ensuring
a strong foundational representation before interacting with
event features. After feeding F! and F, to the three branches,
we obtain the respective outputs: F, é (global), Fi (local), and

4 Global Branch

‘@ Hadamard Product  (©) Concat () Spatial Pooling

Fig. 4. Detailed structure of the proposed EFJI module. EFJI module enhances
cross-modal interaction between event and RGB modalities, featuring three
distinct branches: the global, local, and base branches.

F}B (base). These features are then fused via concatenation
. L . —l
and linear projection to obtain the RGB features F'; and event
—I .
features F'f,. This process can be denoted as

F¢, = GB(F}, Fp), (5)
Fj, =LB(F}, Fj), (6)
Fh = BB(F}), 7
Fy, Fy = Projection([Fl, Fl, Fh)), ®)

where GB(-, -), LB(, ), BB(-), Projection(-), and [-, -] denote
the global branch, the local branch, the base branch, the
linear projection operation and the concatenate operation.
Specifically, concatenation stacks RGB and event feature maps
along the channel dimension to integrate both modalities,
followed by a linear projection using a fully connected layer to
reduce dimensionality and effectively mix features. Through
this design, the RGB and event features interact efficiently,
eliminating the need for complex interaction modules while
ensuring effective feature fusion. This approach balances
computational efficiency and performance, enabling better
integrating complementary information from both modalities.

a) Global branch: Our global branch fuses event and
RGB features to establish relationships across the entire im-
age. Unlike traditional self-attention mechanisms [92], which
suffer from quadratic computation growth as pixels or tokens
increase, we down-sample the query (@ in the global branch to
a fixed size, reducing computational complexity. In our design,
@ is formed by concatenating RGB and event features, while
K and V are derived solely from RGB features. Given the
RGB features F! and event features FY, the process can be

formulated as -
Q= LN(P/C([FI)FE]));
K = LN(Fy), ©)
V = LN(F}),
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where Py () performs adaptive average pooling to size k X k,
and LN(-) is the linear transformation. Based on the resulting
Qe RFxkxc? | j¢ e Rhxwxe? and e RP*xwxe?  the global
branch can be expressed as

FL, = Up(V - Softmax(Q ' K /VC4)), (10)

where Up(+) is a bilinear upsampling operation that converts
the spatial size from k x k to h x w. We set k = 7 in our
experiments.

b) Local branch: We design the local branch to capture
finer details, complementing the global branch. Instead of
using addition or concatenation like previous methods, we
apply depth-wise convolution with a large kernel on event
features. The output serves as attention weights to reweight
the RGB features via the Hadamard product. This is effective
since adjacent pixels with similar event patterns often share
a similar motion pattern, allowing event information to be
embedded into blurred RGB features for improved deblurring.
The process for the local branch is defined as

an

where DWConvy, is a depth-wise convolution with kernel size
k x k and ©® is the Hadamard product.

¢) Base branch: To retain the diverse appearance cues in-
herent in RGB images, we additionally introduce a base branch
that transforms the RGB features F! into 5, maintaining the
same spatial resolution as F, and F. for consistent fusion.
The calculation process of Fg can be defined as

F! = DWConv (LN(FL)) ® LN(F}),

FL = DWConvy (LN(F)) © LN(FY). (12)

C. Event-guided Multi-scale Fusion Attention

RGB images provide rich spatial structures and color in-
formation but tend to suffer from significant degradation
under fast motion, resulting in blur. In contrast, event data
offers high temporal resolution and robustness to motion blur
but lacks dense spatial and color cues. Effectively fusing
these complementary modalities is critical for accurate motion
deblurring. To this end, we propose the EMFA module, which
aims to integrate motion-aware event features and spatially rich
RGB features adaptively. Motivated by the observation that
different convolution kernel sizes capture content at varying
receptive fields, the EMFA module employs a set of asymmet-
ric convolution branches (e.g., 7x 7, 11 x 11, 21 x 21) to model
multi-scale contextual information. This enables the network
to attend to both fine-grained details and broader structures,
enhancing the quality of feature fusion. Furthermore, a cross-
modal gated branch is introduced to selectively control event
information flow, ensuring that only informative cues are
preserved during fusion.

As shown in Figure 5, the EMFA module consists of four
components: a 5 X 5 convolution layer for extracting initial

local features FII, a multi-scale convolution block to capture
local features at different scales, a gated fusion mechanism
for integrating global frame-event relationships, and a 1 x 1
convolution layer to model inter-branch interactions.

o L
L F
Fg 1
[ Znlakl 2l |’___ ___________ ——-\I
|| Gated |1 | ConvIx21 || ConvIxIl || ConvIx7 |
|| Fusion || Conv21x1 || ConviIx1 || Convix1 |1
Cross-Modal® (mc)l‘ TN Convolugiefial Branch
T
X
Fl

Fig. 5. Detailed structure of the proposed EMFA module. This module
captures local visual details and global frame-event cues.

a) Multi-scale convolution activation: We employ three
parallel convolutional branches with varying receptive fields
to effectively capture diverse local visual cues. Each branch
consists of sequential strip-shaped convolutions along vertical
and horizontal axes to model spatially rich features with
strong inductive bias. The resulting multi-scale activation map
Atte°™ is computed as

3 !
Ao — Z Conv’g (Convi (Fll ));

t=1

13)

where t indexes the convolution branch, Conv’j% indicates a
1 x k; convolution function for horizontal linear features, and
Conv, indicates a k; x 1 convolution function for vertical
linear features. The strip-like convolution kernels are designed
to efficiently capture fine-grained local structures, enabling
detailed spatial representation with reduced computational
overhead.

b) Gated fusion operation: We propose a gated fusion
mechanism to effectively integrate cross-modal features from
both RGB frames and event data. This module employs a
series of convolutional layers to dynamically modulate the
fusion process, enabling the selective emphasis of modality-
specific informative cues. The gating operation is defined as
= J(Fy.Fp).
where f(-) denotes a learnable fusion function implemented
via multiple convolutional layers.

c) Integrated attention: To enable comprehensive cross-
modal understanding, we integrate both local and global
contextual cues by combining the outputs of the multi-scale
convolutional branches and the gated cross-modal branch. A
1 x 1 convolution is applied to unify these representations
and compute integrated attention weights, which are used to
reweight the original RGB features Fa. The final integrated

Attgate (14)

-l . .
cross-modal feature map I’ is obtained as

F' = Convyyy (At + At L F )0 Fy,  (15)

where ® denotes element-wise multiplication and Convy 1 (+)
represents a 1 x 1 convolution layer for branch-wise interaction
modeling.
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By embedding the proposed EFJI and EMFA modules
into a multi-scale U-Net framework, Dulnt-Net effectively
captures cross-modal dependencies and hierarchical visual
representations. This holistic design significantly enhances
motion perception and fine-grained detail recovery, resulting
in superior deblurring performance.

IV. EXPERIMENTS
A. Experimental Settings

a) Selected datasets: The proposed Dulnt-Net is eval-
uated on two types of datasets. (1) Synthetic datasets. We
conduct experiments on GoPro [48] and DVD [93], two
widely adopted benchmarks for both image-based and event-
guided motion deblurring. These datasets provide synthetically
blurred images, corresponding sharp ground-truth frames, and
simulated event streams generated via ESIM [94]. We follow
the standard training and testing splits used in prior works to
ensure a fair comparison. (2) Real-world dataset. REBlur [35]
is a challenging dataset comprising real blurry-sharp image
pairs and corresponding event streams, collected under 12
motion types and 3 movement patterns across 36 sequences.
It includes a total of 1,469 image pairs, with 486 for training
and 983 for testing. To evaluate generalization, Dulnt-Net
is first trained on GoPro and directly tested on DVD. For
real-world adaptation, we fine-tune the model on REBlur,
which effectively narrows the domain gap between synthetic
and real-world event data [35]. We also directly test Dulnt-
Net on the FEVD [66] dataset to evaluate its generalization
performance in real-world scenarios. FEVD is a real-captured
dataset providing 21 sequences with a resolution of 1024 x 768,
including dynamic urban scenes with diverse motion modes
such as ego-motion, object motion, and combinations of both.
It contains challenging cases with extreme blur, offering a
comprehensive benchmark for assessing real-world deblurring
effectiveness.

b) Implementation details: Dulnt-Net is implemented
in PyTorch and trained on a single NVIDIA A800 80GB
GPU. The model is trained from scratch using 256 x 256
cropped patches from the GoPro dataset. Data augmentation
techniques include horizontal and vertical flipping, random
noise injection, and the simulation of hot pixels in event
voxels [95]. Given the ground-truth sharp frame [ GT and the
predicted deblurred frame I , we adopt the Charbonnier loss

for optimization
L= \/|HET 1|2 + €2,

where ¢ is empirically set to 1 x 1073, We use the Adam
optimizer with an initial learning rate of 4 x 10~4, decayed via
a cosine annealing schedule down to 1 x 10~7. The network
is trained for 300k iterations with a batch size of 64. For
the REBlur dataset, we fine-tune the pre-trained model for
600 iterations using the same hardware setup, with a reduced
learning rate of 1 x 10> while keeping all other settings
unchanged. We evaluate all methods using two standard image
quality metrics: peak signal-to-noise ratio (PSNR), structural
similarity index (SSIM) [96], and learned perceptual image
patch similarity (LPIPS) [97].

(16)

B. Quantitative and Qualitative Comparisons

We comprehensively evaluate our proposed Dulnt-Net
against advanced methods across two major categories: RGB-
only deblurring and event-based deblurring. (1) RGB-only
deblurring methods. These approaches rely solely on RGB
frame information and include both image-based and video-
based methods. We compare against MemDeblur [98], MMP-
RNN [99], MPRNet [100], MIMO-UNet++ [50], Restormer
[51], RNN-MBP [101], NAFNet [102], VRT [56], DFEN [25],
and DSTN [54]. These methods primarily capture spatial and
temporal information from frames but often struggle in fast-
motion or low-light conditions where motion blur severely
deteriorates visual quality. (2) Event-based deblurring meth-
ods. These methods incorporate event streams to recover sharp
frames and are more robust to extreme motion blur. We include

comparisons with RED [103], eSL-Net [104], D2Nets [60],
DS-Deblur [31], ERDNet [36], EFNet [35], REFID [61],
STCNet [34], TRMD [58], DA [105] and FAEVD [66]. While

these methods leverage the high temporal resolution of event
cameras, many still suffer from suboptimal fusion strategies
and limited cross-modal interaction mechanisms.

a) Quantitative results: As illustrated in Table I, Dulnt-
Net establishes itself as the state-of-the-art method for motion
deblurring by achieving the highest PSNR of 37.00 dB and
SSIM of 0.9792 on the GoPro dataset. This performance
significantly surpasses that of FAEVD (36.70 dB, 0.9780)
and STCNet (36.45 dB, 0.9809), indicating that Dulnt-Net
not only delivers the best quantitative metrics but also ex-
cels in preserving the structural integrity of restored images.
The superior PSNR and SSIM values suggest that Dulnt-Net
effectively reduces noise and artifacts while maintaining fine
details and edges. The DVD dataset, known for its complex
and varied motion blur scenarios, serves as a stringent test
of a model’s generalization ability. As presented in Table II,
Dulnt-Net again demonstrates its superiority with a PSNR
of 34.25 dB and an SSIM of 0.9708. Compared to the
second-best performer, STCNet, which achieves a PSNR of
33.94 dB and an SSIM of 0.9692, these results underscore
Dulnt-Net’s robustness and adaptability across different types
of motion blur. The DVD dataset includes a wide range
of challenging scenarios, and Dulnt-Net’s consistently high
performance indicates its ability to handle diverse and complex
motion blur patterns. To assess real-world applicability, we
evaluate Dulnt-Net on the REBlur dataset, which consists of
real blurred and sharp image pairs. As shown in Table III,
Dulnt-Net sets a new benchmark with 40.42 dB PSNR and
0.9815 SSIM. While STCNet reaches a slightly higher SSIM
(0.9820), Dulnt-Net achieves a clear advantage in PSNR
and overall perceptual quality. As shown in Table V, we
also compare the LPIPS performance of different deblurring
methods on the GoPro dataset. Dulnt-Net achieves an LPIPS
score of 0.0232, which is significantly better than most conven-
tional and learning-based methods such as NAFNet (0.1259)
and eSL-Net (0.1598). Although TRMD achieves the lowest
LPIPS score (0.0200), Dulnt-Net remains highly competitive,
demonstrating its effectiveness in preserving perceptual quality
while maintaining strong quantitative performance. To further
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TABLE I
COMPARISON OF MOTION DEBLURRING METHODS ON THE GOPRO DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD, AND THE SECOND-BEST
RESULTS ARE UNDERLINED.

Method | RED | eSL-Net | D2Nets | MemDeblur | MMP-RNN | MPRNet | MIMO-UNet++ | Restormer | DS-Deblur | RNN-MBP | NAFNet

PSNRT | 2898 | 3023 | 3176 3176 32.64 32.66 32.68 32.92 33.13 33.32 33.69
SSIMT | 0.8499 | 0.8703 | 0.9430 0.9230 0.9359 0.9590 0.9590 0.9610 0.9465 0.9627 0.9670
Method | DFFN | ERDNet | VRT | DSTN | EFNet | REFID | STCNet | TRMD | DA | FAEVD | Dulnt-Net
PSNRY | 3421 | 3425 | 3481 35.05 35.46 35.91 36.45 36.68 36.07 36.70 37.00
SSIMT | 0.9692 | 09534 | 09724 09733 0.9720 0.9730 0.9809 0.9380 0.9760 0.9780 0.9792

Ground-truth

240 07724 R24U 02121

D2Nets

D2Nets

. - —t

ERDNet

(240 0772

DS-Deblur

STCNet Dulnt-Net

DS-Deblur

Ground-truth REFID EIFNet STCNet Dulnt-Net
D2Nets DS-Deblur
Blurry Image Ground-truth REFID EIFNet STCNet Dulnt-Net

Fig. 6. Compared with advanced RGB-only and event-based motion deblurring methods, Dulnt-Net more effectively restores fine textures and structural
details. Red arrows indicate regions where Dulnt-Net achieves noticeably better visual clarity and contrast.

TABLE 1T
COMPARISON OF MOTION DEBLURRING METHODS ON THE DVD DATASET. THE BEST RESULTS ARE MARKED IN BOLD, AND THE SECOND ONES ARE
MARKED WITH UNDERLINES.

Method | D2Nets | MPRNNet | eSL-Net | DS-Deblur | NAFNet | ERDNNet | VRT | EFNet | REFID | STCNet | Dulnt-Net

PSNRT

26.64
SSIMt

27.80
0.8819

27.50
0.9091

31.63
0.8914

0.9436

27.94
0.9126

34.25

32.29
0.9708

31.94
0.9506

32.85
0.9602

33.15
0.9571

33.94
0.9611

0.9692

reduce the perceptual gap, future work could integrate VGG-
based perceptual losses or lightweight adversarial refinement
modules, enabling Dulnt-Net to generate texture details that
better align with human perceptual preferences while retaining
its strong structural reconstruction capability.

b) Computational cost results: We evaluate Dulnt-Net’s
computational efficiency by measuring its parameter count and
average inference time on 1280 x 720 resolution blurry images.
The results, summarized in Table IV, reveal that Dulnt-Net
effectively balances model complexity and deblurring perfor-
mance. Specifically, Dulnt-Net contains only 14.12M param-
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TABLE III
COMPARISON OF DIFFERENT DEBLURRING METHODS ON THE REBLUR DATASET. THE BEST RESULTS ARE MARKED IN BOLD, AND THE SECOND ONES
ARE MARKED WITH UNDERLINES.

Method | ~ D2Nets |  eSL-Net |  ERDNet |  EFNet | REFID |  STCNet |  Dulnt-Net

PSNR? 35.10 35.50 37.98 38.12 38.34 38.98 40.42

SSIM? 0.9621 0.9563 0.9506 0.9750 0.9752 0.9820 0.9815
TABLE IV

COMPLEXITY COMPARISON OF DIFFERENT DEBLURRING METHODS. WE COMPARE THE NUMBER OF PARAMETERS (M), THE AVERAGE RUNTIME (S),
AND THE PSNR RESULTS ON THE GOPRO DATASET.

Method | eSL-Net | D2Nets | MemDeblur | MPRNet | MIMO-UNet++ | Restormer | DS-Deblur | ERDNet ‘ REFID ‘ STCNet ‘ Dulnt-Net
#Params 0.19 32.63 6.10 20.10 16.10 26.09 15.60 18.08 15.9 16.25 14.12
Time 0.015 1.340 0.911 0.117 0.025 1.155 0.292 0.020 0.072 0.098 0.130
PSNR 30.23 31.76 31.76 32.66 32.68 32.92 33.13 34.25 35.91 36.45 37.00
K ‘ii-""'l‘ \‘ii’-u--'ll’ scale redundancy, potentially through early-exit mechanisms
¢ 1""'11' / § Sy, / or adaptive inference.
é ~4 ,- ¢) Qualitative results: We present qualitative compar-
Blurry STCNet DuInt Net Ground truth isons on the GoPro, DVD, REBlur, and FEVD datasets in Fig-

Fig. 7. Visual comparison on the DVD dataset.

TABLE V
COMPARISON OF DIFFERENT DEBLURRING METHODS ON THE GOPRO
DATASET. THE BEST LPIPS RESULTS ARE HIGHLIGHTED IN BOLD, AND
THE SECOND-BEST ARE UNDERLINED.

Methods | NAFNet | eSL-Net | EFNet | TRMD | Dulnt-Net
0.0232

LPIPS| | 0.1259 | 0.1598 | 0.0382 | 0.0200 |

eters, which is notably smaller than many strong baselines,
such as D2Nets (32.63M), MPRNet (20.10M), and Restormer
(26.09M). Despite its compactness, Dulnt-Net consistently
achieves the highest PSNR (37.00 dB) on the GoPro dataset,
demonstrating that efficient architecture design can yield high-
quality restoration without increasing model size. However,
Dulnt-Net’s average runtime of 0.130 seconds is not the fastest
among all methods. Lightweight models like eSL-Net (0.015s)
and MIMO-UNet++ (0.025s) offer faster inference, though at
the expense of significantly lower PSNR. This highlights a crit-
ical trade-off between accuracy and speed, where Dulnt-Net
favors precise restoration, especially under complex motion
blur. The relatively slower inference speed of Dulnt-Net, when
compared to STCNet (0.098s), is primarily attributed to its
parallel three-branch structure in the EFJI module. This design
introduces synchronization bottlenecks, as the final output
must wait for all branches (global, local, base) to finish the
computation. Additionally, the network’s multi-scale hierarchy,
while beneficial for capturing diverse motion blur patterns,
further increases computation due to repeated processing
across scales. These observations emphasize the importance of
architectural efficiency in practical deployment. While Dulnt-
Net demonstrates strong performance and compactness, its
runtime overhead suggests future improvements may focus
on optimizing cross-branch interactions and reducing multi-

ures 6, 7, 8, and 9, respectively. We compare Dulnt-Net against
a range of state-of-the-art RGB-based and event-based motion
deblurring methods. On the GoPro dataset (Figure 6), Dulnt-
Net effectively recovers fine structures severely degraded in
competing methods’ outputs. For example, in the first row, our
method successfully reconstructs the characters on the license
plate, which remain blurry or distorted in the results of other
approaches. In the third row, Dulnt-Net preserves the complex
texture of the tree bark, capturing subtle edge details that
others fail to retain. On the DVD dataset (Figure 7), Dulnt-Net
again demonstrates superior reconstruction accuracy. Com-
pared with STCNet, which produces softened outlines of the
clock’s needle, Dulnt-Net recovers sharper contours and more
faithful geometry, reflecting its enhanced capacity to resolve
high-frequency motion-induced degradation. For real-world
motion blur in the REBlur dataset (Figure 8), our method
shows clear advantages in structural clarity. In the first row,
the checkered pattern is heavily blurred in the input and only
partially recovered by ERDNet, with residual smearing along
the edges. In contrast, Dulnt-Net precisely restores the square
boundaries and textures, producing an output that closely
matches the ground-truth image in sharpness and structural
integrity. As shown in Figure 9, Dulnt-Net produces clearer
structural details and sharper edges compared to other meth-
ods. Specifically, it restores the contours and boundaries of
vehicles more distinctly. It preserves fine textures in building
windows, such as frames and inner structures, which are often
oversmoothed by approaches like Restormer and EFNet. These
results confirm that Dulnt-Net achieves stronger perceptual
quality by leveraging dual frame-event interactions and multi-
scale fusion, particularly in restoring high-frequency and se-
mantically important details across diverse scenes.

C. Ablation Studies

In this section, we conduct experiments on the GoPro
dataset to demonstrate the effectiveness of the Dulnt-Net.
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f

Fig. 8. Visual comparison on the REBlur dataset. Compared to advanced event-based motion deblurring methods, Dulnt-Net restores fine texture better. The
areas marked in red are particularly notable.

Blurry Restormer EFNet STCNet Dulnt-Net Ground-truth

Fig. 9. Visual comparison on the REVD dataset. Compared to advanced motion deblurring methods, Dulnt-Net restores fine textures more accurately,
preserving details such as vehicle edges and window frames. Please zoom in for better visualization.

Feature F

Feature F2 Feature F? Feature F2 Event Feature F5 Feature F} Feature Fg

Fig. 10. Visualization of the feature maps from the EFJI module. Black represents zero values, and white indicates maximum values. The base branch extracts
general frame features, the local branch emphasizes fine-grained details, and the global branch captures broader context with extensive pixel activations. The
feature maps at all three different scales exhibit consistent displays across the branches.

TABLE VI TABLE VII
ANALYSIS ON THE EFJI MODULE AND THE EMFA MODULE. ANALYSIS ON THE EFJI MODULE AND ITS VARIANTS.

Method EFJI | EMFA | PSNR | SSIM Method GB | LB | BB | PSNR | SSIM

Dulnt-Net-Baseline X X 36.15 | 0.9748 EFJl-baseline | X | X | X | 3649 | 0.9770

Dulnt-Net-EFJI v X 36.55 | 0.9766 EFII-G vV | X | X | 3660 | 09778

Dulnt-Net-EMFA X v 36.49 | 0.9770 EFJI-L X | vV | X | 3654 | 09774

Dulnt-Net v v 37.00 | 0.9792 EFJI-B X | X | vV | 3658 | 09772

EFJI-GL v v X | 36.62 | 09780

EFJI-GB v X v | 36.68 | 0.9782

EFJI-BL X v v | 3671 | 09785

a) Effectiveness of the core components in the Dulnt-Net: EFJI-GBL vV | vV | VvV | 37.00 | 09792

The EFJI and EMFA modules form the core components of
Dulnt-Net. To isolate and assess their individual contributions,
we introduce the following network variants: (1) Dulnt-Net- the EMFA module is replaced. (3) Dulnt-Net-EMFA: Only
Baseline: Both EFJI and EMFA modules are removed and the EMFA module is retained, while the EFJI module is
replaced with residual blocks of equivalent parameter count. replaced. The results, presented in Table VI, demonstrate
(2) Dulnt-Net-EFJI: Only the EFJI module is retained, while the effectiveness of both components. The baseline model
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Fig. 11. Visual comparison on the EFJI module and its variants. From left
to right: EFJI-G, EFJI-L, EFJI-B, and EFJI-GBL.

performs the worst, yielding a PSNR of 36.15 dB and an
SSIM of 0.9748. Adding the EFJI module alone improves the
PSNR by 0.40 dB and SSIM by 0.0018, while the EMFA
module alone results in a 0.34 dB PSNR gain and 0.0022
SSIM increase over the baseline. When both modules are
integrated into the full Dulnt-Net, the model achieves the
highest performance with a PSNR of 37.00 dB and SSIM
of 0.9792. This represents a substantial improvement of 0.85
dB in PSNR and 0.0044 in SSIM over the baseline. These
results clearly highlight the complementary benefits of the
EFJI and EMFA modules, demonstrating that both are essential
for maximizing deblurring quality.

b) A close look at the EFJI module: The EFJI module
is specifically designed to enhance both interaction and rep-
resentational capabilities between the RGB and event modal-
ities. Table VII presents an ablation study evaluating various
configurations of the EFJI module, including individual and
combined contributions from the global branch (GB), local
branch (LB), and base branch (BB). Removing all branches
(EFJI-Baseline) yields the lowest performance, with a PSNR
of 36.49 dB and SSIM of 0.9770. Introducing only the global
branch (EFJI-G) leads to a PSNR gain of 0.11 dB over the
baseline, indicating that global contextual modeling benefits
motion understanding. EFJI-L and EFJI-B provide PSNR
improvements of 0.05 dB and 0.09 dB, respectively, suggesting
that both local detail enhancement and foundational RGB en-
coding also contribute positively. Notably, combining branches
results in more substantial gains. For example, EFJI-GL (GB +
LB) achieves 36.62 dB PSNR and 0.9780 SSIM, EFJI-GB (GB
+ BB) improves further to 36.68 dB and 0.9782, and EFJI-
BL (BB + LB) performs even better, reaching 36.71 dB and
0.9785. The full configuration, EFJI-GBL, which integrates all
three branches, delivers the highest performance, with 37.00
dB PSNR and 0.9792 SSIM. This demonstrates a cumulative
effect: combining global, local, and base information leads to
a well-rounded and discriminative feature representation.

We further visualize the feature maps extracted by the EFJI
module in Figure 10 to gain deeper insight into its internal
representation behavior. (1) The base branch (F fB) captures
the coarse structural layout of the scene, providing a strong
backbone of general RGB features. The local branch (Fi)
emphasizes edge-aware, fine-grained textures, particularly in
areas of high-frequency details such as object boundaries
and textures. In contrast, the global branch (Fé) produces
more spatially extensive activation patterns, indicating its
effectiveness in modeling large contextual dependencies and

10

TABLE VIII
ANALYSIS ON THE EMFA MODULE AND ITS VARIANTS.

Method Cross-modal sonV(ililtlon;ll PSNR SSIM
EMFA-baseline X X | X | X | 3655 | 09766
EMFA-Cr v X | X | X | 3663 | 09770
EMFA-Co X vV | vV | V| 3668 | 09773
EMFA-Cr7 v vV | X | X | 3670 | 09775
EMFA-Crl1 v vV | Vv | X | 3675 | 09778
EMFA v vV | v | vV | 37.00 | 09792
TABLE IX

PERFORMANCE COMPARISON USING DIFFERENT CONVOLUTION KERNEL
SIZE COMBINATIONS.

Kernel Sizes | 143+5 | 7411421 | 7421435

PSNR / SSIM ‘ 36.59 / 0.9762 ‘ 37.00 / 0.9792 ‘ 37.03 7/ 0.9798

Kernel Sizes | 7431455 | 11421431 | 31451471

PSNR / SSIM | 36.88 /0.9787 | 37.07/0.9802 | 36.74 / 0.9775

enhancing global motion cues. (2) Across different spatial
scales (I = 1,2, 3), the visual patterns of each branch remain
consistent. This suggests the EFJI module maintains coher-
ent semantics across resolutions, which benefits the multi-
scale decoder in reconstructing sharp structures from blurry
inputs. (3) Moreover, the global branch consistently exhibits
stronger activations in regions with complex motion patterns
(e.g., moving vehicles and scene boundaries), while the local
branch precisely enhances subtle textural variations. These
complementary activations highlight the advantage of using
parallel branches for hierarchical representation and fusion.

Figure 11 visually compares the EFJI configurations. EFJI-
G fails to recover fine textures, leading to overly smoothed re-
sults. EFJI-L struggles with long-range dependencies, resulting
in poor global coherence. EFJI-B introduces artifacts due to the
lack of cross-modal guidance. Only the full EFJI-GBL setup
effectively reconstructs both global structures and fine-grained
details, confirming the necessity of all three components for
optimal performance.

c) A close look at the EMFA module: The EMFA module
is designed to efficiently fuse information from two distinct
modalities, leveraging our proposed attention mechanism for
effective cross-modal interaction. To assess the effectiveness
of the EMFA module and its components, we introduced
several variants, as shown in Table VIII. The analysis of
the EMFA module and its variants shows a clear trend of
performance improvement through cross-modal and convo-
lutional enhancements. The baseline EMFA variant scores a
PSNR of 36.55 and an SSIM of 0.9766. Subsequent variants
demonstrate incremental gains, with EMFA-Cr reaching a
PSNR of 36.63, and EMFA-Co and EMFA-Cr7 achieving
36.68 and 36.70, respectively. Combining cross-modal and
convolutional features in EMFA-Crl1 results in a PSNR of
36.75. Ultimately, the fully integrated EMFA variant achieves
the highest performance, with a PSNR of 37.00 and an SSIM
of 0.9792. This progression underscores the effectiveness of

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 28,2026 at 05:58:09 UTC from IEEE Xplore. Restrictions apply.
© 2026 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2026.3654340

JOURNAL OF BTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Blurry Image
Fig. 12.

Event Frame Feature Att9%te

11

YN

Feature Atts°™" Feature A¢t{3™ Feature Att59™

Visualization of the feature maps from the EMFA module. Black represents zero values, and white indicates maximum values. Feature Att92®

focuses on capturing high-frequency details and edge textures. The convolution branches with different kernel sizes attend to various content ranges, with
smaller kernels focusing on finer local details and larger kernels capturing broader contextual information.

TABLE X
ANALYSIS ON THE NUMBER OF LEVEL IN DUINT-NET.

Method | Level 1 | Level 2 | Level 3 | Level 4 | Level 5
PSNR | 3661 | 3688 | 37.00 | 37.07 | 37.08
SSIM | 09770 | 09785 | 09792 | 09795 | 09795

Dulnt-Net in enhancing motion deblurring through advanced
feature fusion techniques.

To investigate the impact of kernel size in our multi-
scale convolutional design, we retrain Dulnt-Net variants
with different kernel combinations and report the results in
Table IX. Large kernels clearly benefit motion deblurring,
as configurations like 11 + 21 4 31 and 7 + 21 + 35
yield superior performance (37.07/0.9802 and 37.03/0.9798
in PSNR/SSIM, respectively). However, huge kernels (e.g.,
31 4+ 51 4+ 71) degrade performance (36.74/0.9775), likely
due to oversmoothing and diminished local detail modeling,
along with increased computational overhead and potential
overfitting on limited data. These observations underscore the
need to balance global context and local texture representation.
Future work could explore adaptive kernel strategies, such as
deformable convolutions, to dynamically adjust receptive fields
based on input structure, offering a more efficient trade-off
between accuracy and complexity.

As illustrated in Figure 12, we visualize the feature maps
generated by the EMFA module to better understand its be-
havior. We observe two notable insights: (1) The gated fusion
operation Att#"¢ exhibits activation patterns that resemble
the event modality, emphasizing high-frequency textures and
edge structures. This confirms its effectiveness in selectively
integrating event-driven cues that are crucial for recovering
motion-induced details. (2) The convolution branches with
different kernel sizes (7, 11, and 21) display complementary
activation patterns. Specifically, smaller kernels (e.g., k = 7)
focus on fine local structures such as floral textures and
edge contours, while larger kernels (e.g., & = 21) respond
to broader contextual information, capturing coarse semantic
layouts. This diversity of spatial sensitivity allows the EMFA
module to extract rich features across multiple receptive fields,
facilitating robust and detail-preserving fusion for motion
deblurring.

d) Effectiveness of the multi-scale structure: Table X
investigates the impact of the number of hierarchical levels in
Dulnt-Net on deblurring performance. As levels increase from
1 to 3, PSNR and SSIM steadily improve—from 36.61 dB
and 0.9770 (Level 1) to 37.00 dB and 0.9792 (Level 3). This

TABLE XI
COMPARISON OF DUINT-NET AND ITS DISTILLED VERSION.

Method | #Params | Time | PSNR
Dulnt-Net 14.12 0.130 37.00
Dulnt-Net (Distilled) 8.59 0.098 36.62

indicates that deeper hierarchical structures allow for more
effective feature aggregation and cross-modal interaction. Fur-
ther increasing the level count to 4 and 5 yields marginal gains,
with PSNR improving slightly to 37.07 and 37.08 dB and
SSIM stabilizing at 0.9795. These results suggest diminishing
returns beyond three levels, implying that Level 3 offers
the best trade-off between performance and computational
efficiency. Hence, Dulnt-Net with three levels balances model
complexity and accuracy.

e) Comparison between Dulnt-Net and its distilled ver-
sion: To construct the distilled student model, we simplify
the frame-related branches of Dulnt-Net by retaining only a
single convolutional layer followed by a ResASPP block at
each scale, preserving essential spatial context modeling while
significantly reducing parameters and computation. The event
encoder remains unchanged to maintain its crucial capabil-
ity in capturing fine-grained motion dynamics for accurate
deblurring under large motion or severe blur conditions. For
distillation, we adopt a two-level strategy. At the feature level,
we apply an ¢; loss between the intermediate features of the
teacher and student models (excluding event-specific blocks)
to encourage representational alignment. At the output level,
we minimize the Charbonnier loss between the restored frames
of both models to enhance perceptual fidelity. As is shown in
Table XI, this distilled variant achieves a favorable trade-off,
significantly reducing the model size and inference time while
maintaining competitive deblurring performance.

f) Impact of different event representations and feature
extraction methods: We follow the widely adopted event
representation method, consistent with [35], to ensure a fair
comparison with prior works. To further investigate the impact
of event representation, we also experiment with the method
proposed in [106] and re-train Dulnt-Net using this setting.
The results show comparable performance to our default
representation (PSNR 36.93 dB, SSIM 0.9788), suggesting
that Dulnt-Net is not highly sensitive to the specific event
representation. Additionally, we explore the use of a spiking
neural network (SNN) from [107] for event feature extraction.
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Fig. 13. Failure cases. The first and third images are our results, while the
second and fourth images represent the ground truth. Please zoom in for better
visualization.

Fig. 14. Failure case analysis. From left to right: Dulnt-Net reconstructed
output, visualization of the input event stream, and the extracted event feature
map. Dulnt-Net struggles to recover extremely fine details such as small text
regions or thin structures because event streams cannot record precise spatial
details, and the corresponding event features lack sufficient representational
capability for such intricate information.

The SNN-based model achieves a slightly improved perfor-
mance, with a PSNR of 37.05 dB and an SSIM of 0.9800,
compared to our original design. These results indicate the
potential of learnable event encoders.

D. Discussions

While Dulnt-Net achieves strong performance across bench-
marks, several limitations remain. For challenging scenes, it
struggles with fine-grained reconstruction (e.g., blurred text)
and large object motion, as shown in Figure 13. Figure 14
further illustrates cases where Dulnt-Net fails to recover
extremely fine details such as small text or thin structures. This
is because event cameras primarily encode intensity changes
rather than detailed textures, making them unable to capture
precise spatial details. When RGB inputs also lack these
details due to severe blur, events do not provide sufficient com-
plementary cues. Moreover, event cameras exhibit spatial spar-
sity, primarily responding to edges or significant brightness
changes, resulting in insufficient activation in textureless areas.
Even when triggered, events predominantly reflect motion
edges rather than static fine textures, resulting in features that
convey motion dynamics and edges but lack dense pixel-level
detail. These limitations suggest that future improvements may
require integrating additional priors or generative perceptual
modules to hallucinate fine textures beyond what is available
in RGB frames and event streams.

In addition, Dulnt-Net can be further improved in several
aspects. First, it assumes well-aligned and clean frame-event
inputs, but in real-world scenarios, event misalignment or
polarity noise can impair fusion quality, especially under fast
motion or jitter. Incorporating noise-robust alignment modules
or confidence-aware fusion strategies could mitigate this issue.
Second, although large-kernel convolutions enhance global
context modeling, they introduce considerable memory and
computational overhead, resulting in slow inference speed. As
shown in our complexity analysis, the triple-branch EFIJI struc-
ture increases inference time, limiting its applicability in real-
time or resource-constrained environments. Lightweight alter-
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natives such as re-parameterized convolutions [108] or neu-
ral architecture search-based compression [109] may provide
more efficient solutions. Third, Dulnt-Net relies on single-
frame RGB input, limiting its temporal modeling capabilities;
in cases of dynamic lighting or large object displacements,
single-frame information may be insufficient. Extending the
framework to multi-frame inputs or learning temporal priors
could improve robustness. Fourth, the model lacks explicit
handling of illumination changes and occlusions, which can
result in degraded performance in scenes with flickering lights
or occluding objects. Future work may explore semantic priors
or attention-based reasoning to address these challenges.

V. CONCLUSION

In this paper, we introduce Dulnt-Net, a multi-scale neural
network designed for motion deblurring by leveraging event
cameras to enhance event-frame interaction and adaptively
capture rich spatiotemporal features. Our proposed EFJI mod-
ule facilitates the effective fusion of event and frame informa-
tion, significantly improving motion understanding and fine-
grained detail restoration. The EMFA module also integrates
local and global contextual cues, enabling more robust and pre-
cise image reconstruction. Extensive experiments demonstrate
that Dulnt-Net achieves superior performance across various
benchmark datasets.
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