

Paper ID: 10317

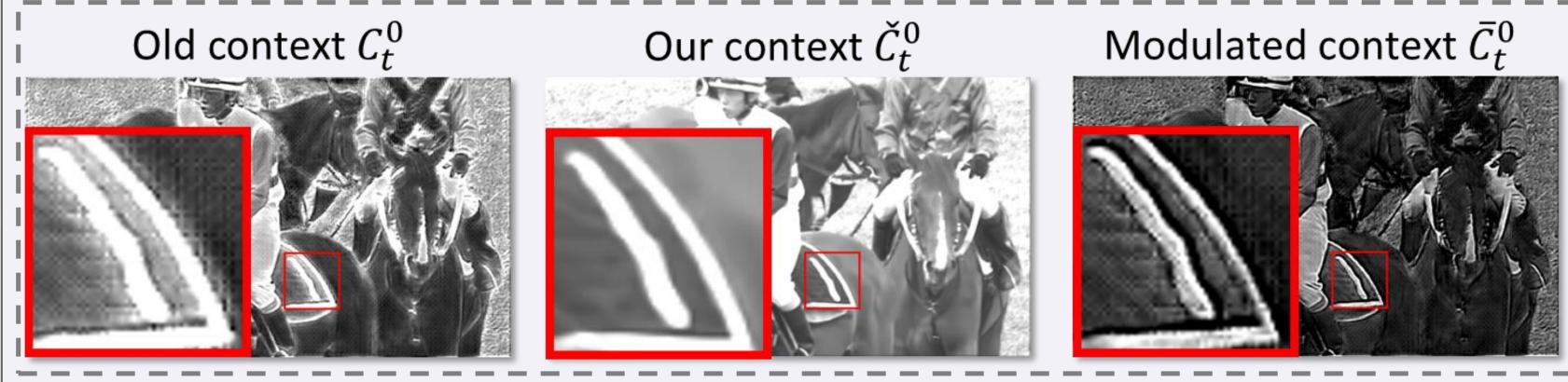
Neural Video Compression with Context Modulation

Zhuoyuan Li Yifan Bian Li Li Chuanbo Tang Dong Liu

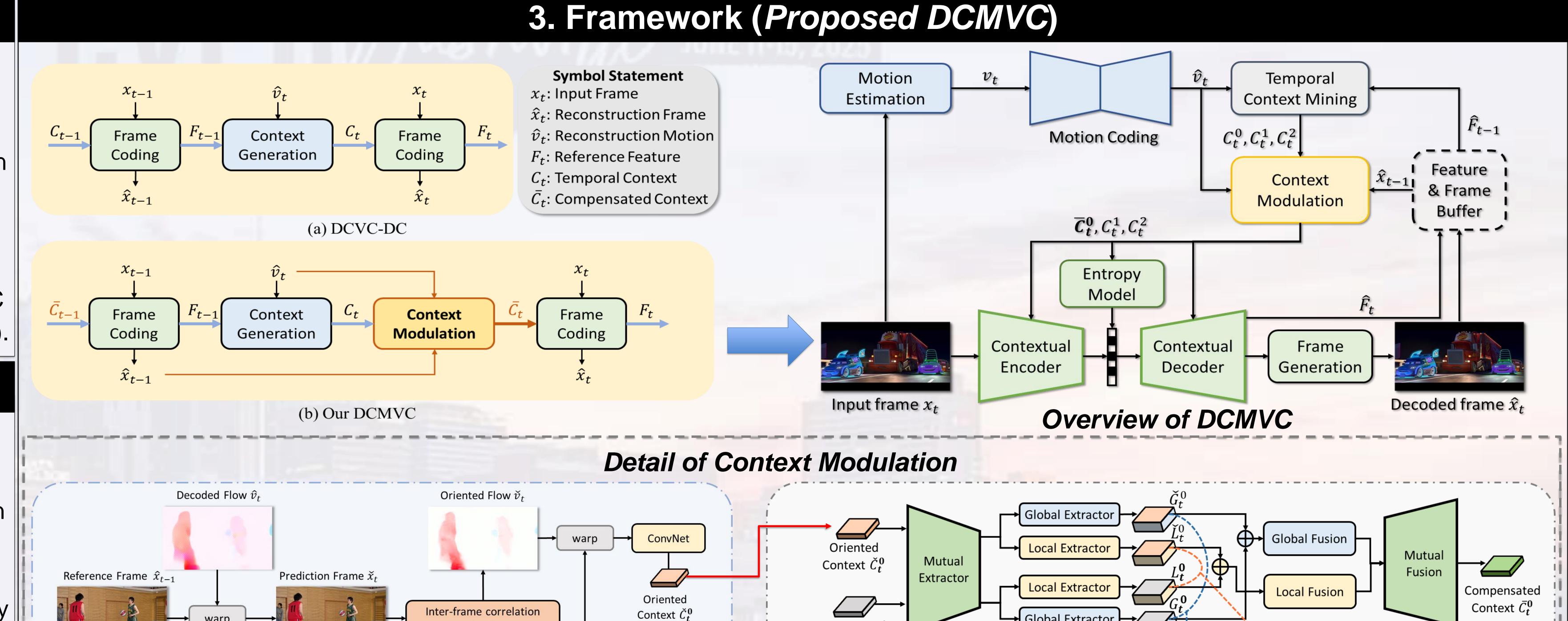
Context Compensation

1. Contributions

- Proposing context modulation in the conditional coding-based framework to generate high-quality temporal context exploiting the reference information in both pixel and feature domain.
- 2. Proposing flow orientation to mine inter-frame correlation between the reference frame and prediction frame.
- 3. Proposing context compensation to modulate the propagated temporal context with oriented context.
- 4. SOTA compression performance compared with both H.266/VVC (22.7%) and previous SOTA neural video codec DCVC-FM (10.1%).


2. Motivation and Analysis

Motivation


- Previous conditional coding-based neural video codecs (NVCs) adopted the inherent reference propagation structure mechanism in temporal context generation with input of propagated adjacent reference feature F_{t-1} and reconstructed MV \hat{v}_t .
- 2. DCVC-FM has mitigated the error propagation in NVCs by manually switching the input of context generation from the propagated reference feature F_{t-1} to reference frame \hat{x}_{t-1} .

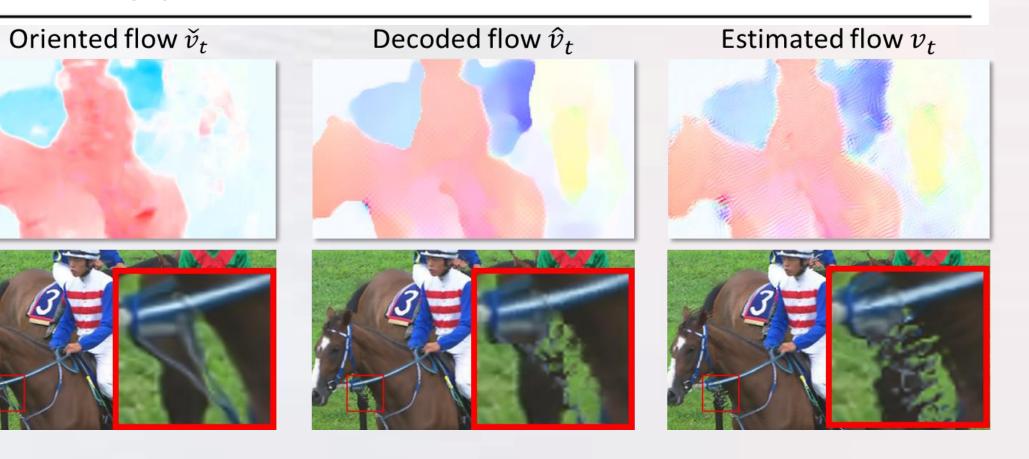
II. Analysis

- 1. Reference frame \hat{x}_{t-1} , constrained by the distortion loss in the rate-distortion (RD) loss function, though contains less information than propagated reference feature F_{t-1} , yet conveys less irrelevant information in the prediction chain.
- 2. Further exploiting the potential of reference frame \hat{x}_{t-1} in context generation can enhance the reference mechanism, enabling better temporal context modeling.

Visualization of Different temporal contexts

4. Experiment Results of Proposed DCMVC

Context (


Comparison with SOTA Methods (BD-Rate(%) for RGB-PSNR)

Flow Orientation

		UVG	MCL-JCV	HEVC B	HEVC C	HEVC D	HEVC E	USTC-TD	Average
32	VTM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	DCVC [25]	133.9	106.6	119.6	152.5	110.9	274.8	139.6	148.3
	DCVC-TCM [47]	23.1	38.2	32.8	62.1	29.0	75.8	75.3	48.0
	DCVC-HEM [26]	-17.2	-1.6	-0.7	16.1	-7.1	20.7	20.6	4.4
	SDD [48]	-19.7	-7.1	-13.7	-2.3	-24.9	-8.4	7.7	-9.8
	DCVC-DC [27]	-25.9	-14.4	-13.9	-8.8	-27.7	-19.1	10.8	-14.1
	DCVC-FM [28]	-20.4	-8.1	-10.3	-8.4	-25.8	-21.9	25.4	-9.9
	Our DCMVC	-30.6	-17.3	-14.5	-14.4	-31.6	-28.1	0.4	-19.4

		UVG	MICL-JC V	печсь	печсс	печср	печсе	031C-1D	Averag
	VTM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	DCVC [25]	259.5	160.0	212.2	254.8	180.6	858.4	168.2	276.2
	DCVC-TCM [47]	61.6	55.5	61.7	99.6	50.4	213.9	90.2	90.4
IP-1	DCVC-HEM [26]	1.2	4.9	10.0	30.0	-1.1	68.6	27.2	20.1
	SDD [48]	-5.5	-0.3	-2.2	16.9	-18.2	46.4	12.3	7.1
	DCVC-DC [27]	-21.2	-13.0	-10.8	-0.1	-24.2	-7.7	11.9	-9.3
	DCVC-FM [28]	-24.3	-12.5	-11.7	-8.2	-28.5	-26.6	23.9	-12.6
	Our DCMVC	-35.6	-22.8	-16.8	-14.8	-34.6	-36.5	1.9	-22.7

Ablation Study Context compensation Decoupling loss Long-sequence training BD-Rate (%) Estimated flow v_t Oriented flow \check{v}_t Decoded flow \hat{v}_i

Quality and bitrate cost comparison

Frame Index

HEVC Class C BasketballDrill

-●- DCVC_FM_PSN

